-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathexecutors.py
253 lines (207 loc) · 11 KB
/
executors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import logging
import random
import time
from itertools import chain
from typing import List, Dict
from TM1py import TM1Service, Process
from execution_mode import ExecutionMode
from results import PermutationResult
def swap(order: list, i1, i2) -> List[str]:
seq = order[:]
seq[i1], seq[i2] = seq[i2], seq[i1]
return seq
def swap_random(order: list) -> List[str]:
idx = range(len(order))
i1, i2 = random.sample(idx, 2)
return swap(order, i1, i2)
class OptipyzerExecutor:
def __init__(self, tm1: TM1Service, cube_name: str, view_names: list, process_name: str,
displayed_dimension_order: List[str],
executions: int, measure_dimension_only_numeric: bool):
self.tm1 = tm1
self.cube_name = cube_name
self.view_names = view_names
self.process_name = process_name
self.dimensions = displayed_dimension_order
self.executions = executions
self.measure_dimension_only_numeric = measure_dimension_only_numeric
self.mode = None
self.include_process = bool(process_name)
self.cube_dim_number = len(self.dimensions)
def _determine_query_permutation_result(self) -> Dict[str, List[float]]:
query_times_by_view = {}
for view_name in self.view_names:
query_times = []
for _ in range(self.executions):
self.clear_cube_cache()
before = time.time()
self.tm1.cells.create_cellset_from_view(cube_name=self.cube_name, view_name=view_name, private=False)
query_times.append(time.time() - before)
query_times_by_view[view_name] = query_times
return query_times_by_view
def _determine_process_permutation_result(self) -> Dict[str, List[float]]:
execution_times = []
for _ in range(self.executions):
self.clear_cube_cache()
before = time.time()
try:
success, status, _ = self.tm1.processes.execute_with_return(process_name=self.process_name)
except Exception as e:
raise e
if not success:
raise RuntimeError(f"Process: '{self.process_name}' not successful; Status: '{status}'")
execution_times.append(time.time() - before)
return {self.process_name: execution_times}
def _evaluate_permutation(self, permutation: List[str], retrieve_ram: bool = False,
reset_counter: bool = False, is_original_order: bool = False,
total_permutations=None) -> PermutationResult:
ram_percentage_change = self.tm1.cubes.update_storage_dimension_order(self.cube_name, permutation)
query_times_by_view = self._determine_query_permutation_result()
process_times_by_process = None
if self.include_process:
process_times_by_process = self._determine_process_permutation_result()
ram_usage = None
if retrieve_ram:
ram_usage = self._retrieve_ram_usage()
permutation_result = PermutationResult(self.mode, self.cube_name, self.view_names, self.process_name,
permutation,
query_times_by_view, process_times_by_process, ram_usage,
ram_percentage_change, reset_counter)
if is_original_order:
progress_log = "Original Order"
else:
# decrease counter by 2 because log happens post increment and original order not considered as iteration
progress_log = f"Iteration {PermutationResult.counter - 2} of {total_permutations}"
process_log = " - No process included in test"
if self.include_process:
process_log = f" - Process time [s]: {permutation_result.median_process_time():.5f}"
logging.info(f"{progress_log} - Evaluated order: {permutation} "
f"- RAM [GB]: {permutation_result.ram_usage / 1024 ** 3:.2f} "
f"- Query time [s]: {permutation_result.median_query_time():.5f}"
+ process_log)
return permutation_result
def _retrieve_ram_usage(self):
number_of_iterations = 4
for i in range(number_of_iterations):
mdx = """
SELECT
{{ [}}PerfCubes].[{}] }} ON ROWS,
{{ [}}StatsStatsByCube].[Total Memory Used] }} ON COLUMNS
FROM [}}StatsByCube]
WHERE ([}}TimeIntervals].[LATEST])
""".format(self.cube_name)
value = list(self.tm1.cells.execute_mdx_values(mdx=mdx))[0]
if value:
return value
logging.info("Failed to retrieve RAM consumption. Waiting 15s before retry")
if i < number_of_iterations - 1:
time.sleep(15)
raise RuntimeError("Performance Monitor must be activated")
def clear_cube_cache(self):
process = Process(name="", prolog_procedure=f"DebugUtility(125 ,0 ,0 ,'{self.cube_name}' ,'' ,'');")
success, status, error_log_file = self.tm1.processes.execute_process_with_return(process)
if not success:
raise RuntimeError(f"Failed to clear cache for cube '{self.cube_name}'. Status: '{status}'")
class OriginalOrderExecutor(OptipyzerExecutor):
def __init__(self, tm1: TM1Service, cube_name: str, view_names: List[str], process_name: str, dimensions: List[str],
executions: int,
measure_dimension_only_numeric: bool, original_dimension_order: List[str]):
super().__init__(tm1, cube_name, view_names, process_name, dimensions, executions,
measure_dimension_only_numeric)
self.mode = ExecutionMode.ORIGINAL_ORDER
self.original_dimension_order = original_dimension_order
def execute(self, reset_counter=True):
# at initial execution ram must be retrieved
return [self._evaluate_permutation(
self.original_dimension_order,
retrieve_ram=True,
reset_counter=reset_counter,
is_original_order=True)]
class MainExecutor(OptipyzerExecutor):
def __init__(self, tm1: TM1Service, cube_name: str, view_names: List[str], process_name: str, dimensions: List[str],
executions: int, measure_dimension_only_numeric: bool, fast: bool = False,
dimensions_to_exclude: List[str] = None):
super().__init__(tm1, cube_name, view_names, process_name, dimensions, executions,
measure_dimension_only_numeric)
self.mode = ExecutionMode.ITERATIONS
self.fast = fast
self.dimensions_to_exclude = (
[] if dimensions_to_exclude is None else dimensions_to_exclude
)
if len(view_names) > 1:
logging.warning("BestExecutor mode will use first view and ignore other views: " + str(view_names[1:]))
self.view_name = view_names[0]
def _check_swap_dim_with_str_to_last_position(
self, dimension_name: str, target_position: int
) -> bool:
# if a dimension has strings and target dimension is the last dimension in the cube - do not swap.
# rest API allows to swap a dim with string to the last position, but not out of the last position
if self.tm1.hierarchies.exists(
dimension_name=dimension_name, hierarchy_name="Leaves"
):
hierarchy_name = "Leaves"
else:
hierarchy_name = dimension_name
elements = self.tm1.elements.get_element_types(
dimension_name=dimension_name,
hierarchy_name=hierarchy_name,
skip_consolidations=True,
)
string_elements = [element for element, element_type in elements.items() if element_type != "Numeric"]
if string_elements:
logging.info(
f"Skip swapping dimension '{dimension_name}' into last position because it has string elements: {string_elements}")
last_target_position = target_position + 1 == self.cube_dim_number
return string_elements and last_target_position
def execute(self) -> List[PermutationResult]:
dimensions = self.dimensions[:]
resulting_order = self.dimensions[:]
permutation_results = []
# dimensions that we're allowed to swap
dimension_pool = [
dim for dim in self.dimensions[:] if dim not in self.dimensions_to_exclude
]
mid = int(len(dimension_pool) / 2)
if not self.measure_dimension_only_numeric:
dimension_pool.remove(self.dimensions[-1])
dimensions.remove(self.dimensions[-1])
if self.fast:
# for 5 dimensional cubes we evaluate 5 + 4 permutations
total_permutations = len(dimension_pool) * 2 - 1
else:
# for 5 dimensional cubes we evaluate 5 + 4 + 3 + 2 permutations
total_permutations = sum(range(2, len(dimension_pool) + 1))
# iteration through positions like: n, 0, n-1, 1, n-2, 2, ...
for iteration, target_position in enumerate(
chain(*zip(reversed(range(len(dimensions))), range(len(dimensions))))):
if self.fast and iteration == 2:
break
if target_position == mid:
break
results_per_dimension = list()
# for the current position - swap all the allowed dimensions and append all possible orders to the result set
for dimension in dimension_pool:
original_position = resulting_order.index(dimension)
dimension_target = resulting_order[target_position]
if (not self._check_swap_dim_with_str_to_last_position(dimension, target_position)
and dimension_target in dimension_pool):
permutation = list(resulting_order)
permutation = swap(permutation, target_position, original_position)
permutation_result = self._evaluate_permutation(permutation, total_permutations=total_permutations)
permutation_results.append(permutation_result)
results_per_dimension.append(permutation_result)
# only check for best results if any valid dim swaps are returned
if len(results_per_dimension) > 0:
# for the current position - if position is higher than the mid-point - sort by ram use
if target_position > mid:
best_order = sorted(
results_per_dimension,
key=lambda r: r.ram_usage)[0]
# for the current position - if position is lower than the mid-point - sort by view execution time
else:
best_order = sorted(
results_per_dimension,
key=lambda r: r.median_query_time(self.view_name))[0]
resulting_order = list(best_order.dimension_order)
dimension_pool.remove(resulting_order[target_position])
return permutation_results