-
Notifications
You must be signed in to change notification settings - Fork 0
/
cfg.yml
246 lines (230 loc) · 5.44 KB
/
cfg.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
PIPELINE:
DATA:
ROOT: 'kitti'
SCRIPT: 'kitti_object'
LOADER: 'kittiObjectDataset'
NUM_WORKERS: 1
MODEL:
TASK: detection
SCRIPT: 'faster_rcnn_lidar3d.bv_net'
NAME: 'bv_net'
TRAIN:
START_EPOCH: 0
END_EPOCH: 15
BATCH_SIZE: 4
OPTIMIZER: adam
LEARNING_RATE: 0.00005
WEIGHT_DECAY: 0.0005
DOUBLE_BIAS: false
BIAS_DECAY: false
MOMENTUM: 0.9
LR_DECAY_GAMMA: 0.1
LR_DECAY_EPOCH: 10
CLIP_GRAD: -1
PRETRAINED: False
PRETRAINED_WEIGHT: ''
RESUME: false
RESUME_EPOCH: 0
FINE_TUNE: false
FINE_TUNE_STRICT: false
FINE_TUNE_MODEL: ''
FINE_TUNE_STATE_DICT: true
SNAPSHOT_INTERVAL: 10000
SNAPSHOT_PREFIX: results/snapshots/bv_net
EVAL_INTERVAL: -1
DISP_INTERVAL: 200
VAL:
BATCH_SIZE: 4
TEST:
BATCH_SIZE: 4
MODEL:
DETECTION:
CLASSES:
- __background__
- car
WITH_FC6: true
RESNET:
FIX_BN_AFFINE: true
FIX_BN: true
FORMAT_NAME: true
WITH_DROPOUT: true
BN_MOMENTUM: 0.1
CLASS_AGNOSTIC: false
POOLING_SIZE: 7
CROP_RESIZE_WITH_MAX_POOL: true
LIGHT_HEAD: true
PSROI_ALIGN: true
PSROI_ALIGN_TYPE: 1
POOLING_MODE: crop
IM_LOG: false
RCNN_CLS_WEIGHT: 1.0
RCNN_BOX_WEIGHT: 1.0
TRUNCATED: false
PRETRAINED: false
PRETRAINED_WEIGHT: ''
FC_CHANNEL: 512
NUM_LAYERS: 0
NET_TYPE: net1
###########proposal target config
BBOX_NORMALIZE_MEANS:
- 0.0
- 0.0
- 0.0
- 0.0
BBOX_NORMALIZE_STDS:
- 0.1
- 0.1
- 0.2
- 0.2
BBOX_INSIDE_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
INCLUDE_GTBOX: false
RPN_BATCH_SIZE: 128
FG_FRACTION: 0.25
BBOX_NORMALIZE_TARGETS_PRECOMPUTED: true
FG_THRESH: 0.7
BG_THRESH_HI: 0.7 # 0.5 default
BG_THRESH_LO: 0.0
###########rpn config
ANCHOR_SCALES:
- 2
- 4
- 8
- 16
- 32
ANCHOR_RATIOS:
- 0.5
- 1
- 2
FEAT_STRIDE:
- 16
RPN_CLS_WEIGHT: 1.0
RPN_BOX_WEIGHT: 1.0
## proposal config
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_NMS_THRESH: 0.7
RPN_MIN_SIZE: 5
USE_GPU_NMS: true
## anchor target layer config
RPN_CLOBBER_POSITIVES: false
RPN_NEGATIVE_OVERLAP: 0.3
WITH_IGNORE: false
RPN_IGNORE_OVERLAP: 0.5
RPN_POSITIVE_OVERLAP: 0.7
RPN_BBOX_OVERLAP: -1.0
RPN_FG_FRACTION: 0.5
RPN_BATCHSIZE: 256
RPN_BBOX_INSIDE_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
RPN_POSITIVE_WEIGHT: -1.0
LIDAR_BV3D_DET:
CLASSES: ['__background__', 'car']
CLASS_AGNOSTIC: True
LIGHT_HEAD: True
ROI_CONV: False
USE_IGNORE: True
USE_FILTER: False
FC_CHANNEL: 1024
FC1_CHANNEL: 0
FC2_CHANNEL: 0
LIGHT_HEAD: True
PSROI_ALIGN: True
ROI_POOL_TYPE: 'maxpool'
# Birdview projection parameters
BV_PARAM:
# height of input birdview feature map
HEIGHT: 800
# width of input birdview feature map
WIDTH: 704
# Y offset
ORI_Y: 40.0
# X offset
ORI_X: 0.0
# Y resolution
RES_Y: 0.1
# X resolution
RES_X: 0.1
# depth (channel) of input voxel feature
DEPTH: 10
# Z offset
ORI_Z: 0.0
# Z resolution
RES_Z: 0.4
# camera height
MIN_HEIGHT: -2.0
# max height
MAX_HEIGHT: 2.0
# hand-crafted feature types
NUM_SLICES: 1
USE_HEIGHT_SLICE: True
USE_MEAN_HEIGHT: True
USE_MAX_HEIGHT: False
USE_INTENSITY_SLICE: True
USE_MEAN_INTENSITY: True
USE_TOP_INTENSITY: False
USE_DENSITY: True
USE_NONEMPTY: True
USE_DISTANCE: True
USE_DIRECTION: True
USE_RGB_SLICE: False
OUTPUT_SCORE: True
RM_EMPTY_ANCHORS: False
USE_CENTER: False
BIRDVIEW:
USE_VOXEL: False
USE_POINTNET: False
ANCHOR_SIZES: [[3.9,1.6], [1.6,3.9]] # meter
NUM_ANCHORS: 2
IMU_HEIGHT: 1.73 # meter
RPN_FEAT_STRIDE: 2
RCNN_FEAT_STRIDE: 2
PRECOMPUTED: False
PROPOSAL_TYPE: 'corner' # 'corner', 'center'
MULTI_BIN_START: 1.0
ANGLE_TYPE: 'global'
# anchor target config
ANCHOR_ORIENTED_OVERLAP: False
# rpn config
RPN_ADAPTIVE_THRESH: True
RPN_POSITIVE_HI: 0.7
RPN_POSITIVE_LO: 0.3
RPN_NEGATIVE_HI: 0.6
RPN_NEGATIVE_LO: 0.2
# If an anchor statisfied by positive and negative conditions set to negative
RPN_CLOBBER_POSITIVES: False
# Max number of foreground examples
RPN_FG_FRACTION: 0.5
# Total number of examples
RPN_BATCHSIZE: 256
# Give the positive RPN examples weight of p * 1 / {num positives}
# and give negatives a weight of (1 - p)
# Set to -1.0 to use uniform example weighting
RPN_POSITIVE_WEIGHT: -1.0
## proposal 3d config
# NMS threshold used on RPN proposals
RPN_NMS_THRESH: 0.7
# Number of top scoring boxes to keep before apply NMS to RPN proposals
RPN_PRE_NMS_TOP_N: 12000
# Number of top scoring boxes to keep after applying NMS to RPN proposals
RPN_POST_NMS_TOP_N: 2000
# Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale)
RPN_MIN_SIZE: 8
## Use oriented corner box nms for rpn
RPN_ORIENTED_NMS: False
USING_PY_METHOD: False
RPN_CONV: False
## rcnn config
RCNN_CLS_WEIGHT: 1.0
RCNN_BBOX_WEIGHT: 1.0
CLASSIFICATION: ''
PARSING: ''
PRED: ''
STEREO: ''
TRACKING: ''