-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomponent_culture_classifier.py
276 lines (239 loc) · 10.2 KB
/
component_culture_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import logging
from functools import partial
from typing import List
import pymongo
from torch.multiprocessing import Pool, set_start_method
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import pipeline
from ds.sentence_culture_labels_item import SentenceCultureLabelsItem
from ds.sentence_item import SentenceItem
from pipeline.pipeline_component import PipelineComponent
from utils.mongodb_handler import get_database
try:
set_start_method("spawn")
except RuntimeError:
pass
logger = logging.getLogger(__name__)
class TextSet(Dataset):
def __init__(self, texts: List[str]):
self._texts = texts
def __len__(self):
return len(self._texts)
def __getitem__(self, index):
return self._texts[index]
def single_run(sentence_items: List[SentenceItem], device: int,
model_name: str, batch_size: int, labels: List[str],
db_host: str, db_port: int, db_name: str, collection_name: str):
# Load the classifier if it's not loaded
logger.info(
f"Loading the classifier \"{model_name}\" "
f"to device \"{device}\"...")
classifier = pipeline("zero-shot-classification",
model=model_name, device=device)
# Get the texts
texts = [item.text for item in sentence_items]
# Classify the sentences
logger.info(
f"Classifying {len(texts):,} sentences "
f"using the classifier \"{model_name}\" "
f"on {(len(texts) // batch_size + 1):,} batches...")
sentence_culture_labels_item = []
text_set = TextSet(texts)
results = []
for result in tqdm(classifier(text_set, labels,
batch_size=batch_size,
multi_label=True),
total=len(texts)):
results.append(result)
# Get the labels
for sentence_item, result in zip(sentence_items, results):
scores = {
label: score for label, score in
zip(result["labels"], result["scores"])
}
sentence_culture_labels_item.append(
SentenceCultureLabelsItem(
None, sentence_item, scores))
logger.info(
f"Classified {len(sentence_culture_labels_item):,} sentences.")
# Insert the culture labels into the database
logger.info(
f"Inserting {len(sentence_culture_labels_item):,} "
f"culture labels into the database...")
client = pymongo.MongoClient(db_host, db_port)
db = client[db_name]
collection = db[collection_name]
collection.insert_many(
[item.to_dict() for item in sentence_culture_labels_item])
logger.info(
f"Inserted {len(sentence_culture_labels_item):,} culture labels "
f"into the database.")
class CultureClassifier(PipelineComponent):
description = "Classify sentences into elements of culture"
config_layer = ["pipeline_components", "culture_classifier"]
def __init__(self, config: dict):
super().__init__(config)
# Get local config
self._local_config = config
for layer in self.config_layer:
self._local_config = self._local_config[layer]
# Get the labels
self._candidate_labels = self._local_config["candidate_labels"]
self._counter_labels = self._local_config.get("counter_labels", [])
self._all_labels = self._candidate_labels + self._counter_labels
# Get the classifier config
self._model_name = self._local_config["model"]
self._devices = config["gpus"]
self._classifier = None
# Get the database config
db_config = self._local_config["db_collections"]
# Assign the database collections
db = get_database(**config["mongo_db"])
self._sentences_collection = db[
f"{self._db_collection_prefix}_"
f"{db_config['sentences']['name']}"]
self._sentence_culture_labels_collection = db[
f"{self._db_collection_prefix}_"
f"{db_config['sentence_culture_labels']['name']}"]
self._generic_sentences_collection = db[
f"{self._db_collection_prefix}_"
f"{db_config['generic_sentences']['name']}"]
# Index the collections
db_config = self._local_config["db_collections"]
indexes = db_config["sentence_culture_labels"]["indexes"]
for index in indexes:
field = index["field"]
unique = index.get("unique", False)
self._sentence_culture_labels_collection.create_index(field,
unique=unique)
for index_name in self._candidate_labels:
self._sentence_culture_labels_collection.create_index(
[(f"scores.{index_name}", pymongo.DESCENDING)])
for index_name in self._counter_labels:
self._sentence_culture_labels_collection.create_index(
[(f"scores.{index_name}", pymongo.ASCENDING)])
def run(self):
""" Classifies the sentences into elements of culture """
# Get the sentences, filter by the given SpaCy file lists
logger.info("Getting the sentences from DB...")
# generic_sentence_items = list(
# self._generic_sentences_collection.aggregate([
# {"$lookup": {
# "from": self._sentences_collection.name,
# "localField": "sentence_item_id",
# "foreignField": "_id",
# "as": "sentence_item"
# }},
# {"$unwind": "$sentence_item"},
# {"$match": {
# "$and": [
# {"sentence_item.file_path": {
# "$in": self._config["input"][
# "spacy_file_list"]}},
# {"is_generic": True},
# ],
# }},
# ]))
#
# sentence_items = [
# SentenceItem.from_dict(item["sentence_item"]) for item in
# generic_sentence_items
# ]
sentence_items = [
SentenceItem.from_dict(item) for item in
self._sentences_collection.aggregate([
{"$lookup": {
"from": self._generic_sentences_collection.name,
"localField": "_id",
"foreignField": "sentence_item_id",
"as": "generic"
}},
{"$unwind": "$generic"},
{"$match":
{"$and": [
{"file_path": {
"$in": self._config["input"][
"spacy_file_list"]
}},
{"generic.is_generic": True}
]}
},
])
]
# Old code for running all Spacy files
# generic_ids = [
# item["sentence_item_id"] for item in
# self._generic_sentences_collection.find({})
# ]
# logger.info(f"Found {len(generic_ids):,} generic sentences.")
#
# sentence_items = []
# for idx in tqdm(list(range(0, len(generic_ids), 1000))):
# sentence_items.extend([
# SentenceItem.from_dict(item) for item in
# self._sentences_collection.find({
# "_id": {"$in": generic_ids[idx:idx + 1000]}
# })
# ])
# End of old code
logger.info(
f"Found {len(sentence_items):,} sentences "
f"to classify into elements of culture.")
# Find the sentences that have already been classified
logger.info("Getting the already classified sentences from DB...")
existing_labels_items = []
for idx in tqdm(list(range(0, len(sentence_items), 1000))):
existing_labels_items.extend(list(
self._sentence_culture_labels_collection.find(
{"sentence_item_id": {"$in": [s.get_id() for s in
sentence_items[
idx:idx + 1000]]}}
)))
if not self._local_config.get("overwrite", False):
existing_ids = set(
[item["sentence_item_id"] for item in existing_labels_items])
logger.info(
f"Found {len(existing_labels_items):,} existing culture "
f"labels")
sentence_items = [item for item in sentence_items
if item.get_id() not in existing_ids]
else:
logger.info(f"Removing {len(existing_labels_items):,} existing "
f"culture labels.")
self._sentence_culture_labels_collection.delete_many(
{"_id": {"$in": [s["_id"] for s in
existing_labels_items]}})
if len(sentence_items) == 0:
logger.info("No sentences to classify.")
return
logger.info(
f"Running the culture classifier on "
f"{len(sentence_items):,} sentences...")
# Divide into chunks corresponding to the number of GPUs
chunks = [sentence_items[i::len(self._devices)] for i in
range(len(self._devices))]
func = partial(
single_run,
model_name=str(self._model_name),
batch_size=int(self._local_config.get("batch_size", 32)),
labels=[label for label in self._all_labels],
db_host=str(self._config["mongo_db"]["host"]),
db_port=int(self._config["mongo_db"]["port"]),
db_name=str(self._config["mongo_db"]["database"]),
collection_name=str(self._sentence_culture_labels_collection.name)
)
# Run the component (parallelized) on the GPU(s)
if len(self._devices) == 1:
func(chunks[0], self._devices[0])
else:
with Pool(len(self._devices)) as pool:
pool.starmap(func, zip(chunks, self._devices))
def needs_spacy_docs(self):
return False
def initialize(self):
return
def needs_people_group_tree(self) -> bool:
return False
def is_initialized(self) -> bool:
return True