-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathgeocalib.py
150 lines (114 loc) · 5.22 KB
/
geocalib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""GeoCalib model definition."""
import logging
from typing import Dict
import torch
from torch import nn
from torch.nn import functional as F
from geocalib.lm_optimizer import LMOptimizer
from geocalib.modules import MSCAN, ConvModule, LightHamHead
# mypy: ignore-errors
logger = logging.getLogger(__name__)
class LowLevelEncoder(nn.Module):
"""Very simple low-level encoder."""
def __init__(self):
"""Simple low-level encoder."""
super().__init__()
self.in_channel = 3
self.feat_dim = 64
self.conv1 = ConvModule(self.in_channel, self.feat_dim, kernel_size=3, padding=1)
self.conv2 = ConvModule(self.feat_dim, self.feat_dim, kernel_size=3, padding=1)
def forward(self, data: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Forward pass."""
x = data["image"]
assert (
x.shape[-1] % 32 == 0 and x.shape[-2] % 32 == 0
), "Image size must be multiple of 32 if not using single image input."
c1 = self.conv1(x)
c2 = self.conv2(c1)
return {"features": c2}
class UpDecoder(nn.Module):
"""Minimal implementation of UpDecoder."""
def __init__(self):
"""Up decoder."""
super().__init__()
self.decoder = LightHamHead()
self.linear_pred_up = nn.Conv2d(self.decoder.out_channels, 2, kernel_size=1)
def forward(self, data: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Forward pass."""
x, log_confidence = self.decoder(data["features"])
up = self.linear_pred_up(x)
return {"up_field": F.normalize(up, dim=1), "up_confidence": torch.sigmoid(log_confidence)}
class LatitudeDecoder(nn.Module):
"""Minimal implementation of LatitudeDecoder."""
def __init__(self):
"""Latitude decoder."""
super().__init__()
self.decoder = LightHamHead()
self.linear_pred_latitude = nn.Conv2d(self.decoder.out_channels, 1, kernel_size=1)
def forward(self, data: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Forward pass."""
x, log_confidence = self.decoder(data["features"])
eps = 1e-5 # avoid nan in backward of asin
lat = torch.tanh(self.linear_pred_latitude(x))
lat = torch.asin(torch.clamp(lat, -1 + eps, 1 - eps))
return {"latitude_field": lat, "latitude_confidence": torch.sigmoid(log_confidence)}
class PerspectiveDecoder(nn.Module):
"""Minimal implementation of PerspectiveDecoder."""
def __init__(self):
"""Perspective decoder wrapping up and latitude decoders."""
super().__init__()
self.up_head = UpDecoder()
self.latitude_head = LatitudeDecoder()
def forward(self, data: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Forward pass."""
return self.up_head(data) | self.latitude_head(data)
class GeoCalib(nn.Module):
"""GeoCalib inference model."""
def __init__(self, **optimizer_options):
"""Initialize the GeoCalib inference model.
Args:
optimizer_options: Options for the lm optimizer.
"""
super().__init__()
self.backbone = MSCAN()
self.ll_enc = LowLevelEncoder()
self.perspective_decoder = PerspectiveDecoder()
self.optimizer = LMOptimizer({**optimizer_options})
def forward(self, data: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Forward pass."""
features = {"hl": self.backbone(data)["features"], "ll": self.ll_enc(data)["features"]}
out = self.perspective_decoder({"features": features})
out |= {
k: data[k]
for k in ["image", "scales", "prior_gravity", "prior_focal", "prior_k1"]
if k in data
}
out |= self.optimizer(out)
return out
def flexible_load(self, state_dict: Dict[str, torch.Tensor]) -> None:
"""Load a checkpoint with flexible key names."""
dict_params = set(state_dict.keys())
model_params = set(map(lambda n: n[0], self.named_parameters()))
if dict_params == model_params: # perfect fit
logger.info("Loading all parameters of the checkpoint.")
self.load_state_dict(state_dict, strict=True)
return
elif len(dict_params & model_params) == 0: # perfect mismatch
strip_prefix = lambda x: ".".join(x.split(".")[:1] + x.split(".")[2:])
state_dict = {strip_prefix(n): p for n, p in state_dict.items()}
dict_params = set(state_dict.keys())
if len(dict_params & model_params) == 0:
raise ValueError(
"Could not manage to load the checkpoint with"
"parameters:" + "\n\t".join(sorted(dict_params))
)
common_params = dict_params & model_params
left_params = dict_params - model_params
left_params = [
p for p in left_params if "running" not in p and "num_batches_tracked" not in p
]
logger.debug("Loading parameters:\n\t" + "\n\t".join(sorted(common_params)))
if left_params:
# ignore running stats of batchnorm
logger.warning("Could not load parameters:\n\t" + "\n\t".join(sorted(left_params)))
self.load_state_dict(state_dict, strict=False)