From 115b43cf10410f0fb172902910d3e1e79cd3b13d Mon Sep 17 00:00:00 2001
From: cwieder Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page If you use PathIntegrate in your research, please cite our paper:
Installation
Tutorials and documentation
Citing PathIntegrate
PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration
diff --git a/gendocs_docs/reference/pathintegrate/index.html b/gendocs_docs/reference/pathintegrate/index.html
index 821aa39..c214b47 100644
--- a/gendocs_docs/reference/pathintegrate/index.html
+++ b/gendocs_docs/reference/pathintegrate/index.html
@@ -463,19 +463,56 @@
PathIntegrate
min_coverage = 3
)
PathIntegrate class for multi-omics pathway integration.
+Args
+Attributes
+Methods:
source +
.get_multi_omics_coverage()
source +
.MultiView(
ncomp = 2
)
Fits a PathIntegrate MultiView model using MBPLS.
+Args
+Returns
+source +
.SingleView(
model = sklearn.linear_model.LogisticRegression, model_params = None
)
@@ -492,25 +529,55 @@ .SingleView
object : Fitted PathIntegrate SingleView model.
.SingleViewCV
-source
+
.SingleViewCV(
model = sklearn.linear_model.LogisticRegression, model_params = None,
cv_params = None
)
+
+Cross-validation for SingleView model.
+Args
+
+- model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression.
+- model_params (type, optional) : Model-specific hyperparameters. Defaults to None.
+- cv_params (dict, optional) : Cross-validation parameters. Defaults to None.
+
+Returns
+
+- object : Cross-validation results.
+
.SingleViewGridSearchCV
-source
+
.SingleViewGridSearchCV(
param_grid, model = sklearn.linear_model.LogisticRegression,
grid_search_params = None
)
+
+Grid search cross-validation for SingleView model.
+Args
+
+- param_grid (dict) : Grid search parameters.
+- model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression.
+- grid_search_params (dict, optional) : Grid search parameters. Defaults to None.
+
+Returns
+
+- object : GridSearchCV object.
+
.MultiViewCV
-source
+
.MultiViewCV()
+
+Cross-validation for MultiView model.
+Returns
+
+- object : Cross-validation results.
+
.MultiViewGridSearchCV
-source
+
.MultiViewGridSearchCV()
diff --git a/index.html b/index.html
index 30bc428..96bcd23 100644
--- a/index.html
+++ b/index.html
@@ -408,7 +408,6 @@ Installation
Please see our Quickstart guide on Google Colab
-Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page
If you use PathIntegrate in your research, please cite our paper:
PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration
diff --git a/search/search_index.json b/search/search_index.json
index f64ff59..060380f 100644
--- a/search/search_index.json
+++ b/search/search_index.json
@@ -1 +1 @@
-{"config":{"indexing":"full","lang":["en"],"min_search_length":3,"prebuild_index":false,"separator":"[\\s\\-]+"},"docs":[{"location":"","text":"PathIntegrate PathIntegrate Python package for pathway-based multi-omics data integration Features Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results Installation pip install -i https://test.pypi.org/simple/ PathIntegrate Tutorials and documentation Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page Citing PathIntegrate If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Home"},{"location":"#pathintegrate","text":"PathIntegrate Python package for pathway-based multi-omics data integration","title":"PathIntegrate"},{"location":"#features","text":"Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results","title":"Features"},{"location":"#installation","text":"pip install -i https://test.pypi.org/simple/ PathIntegrate","title":"Installation"},{"location":"#tutorials-and-documentation","text":"Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page","title":"Tutorials and documentation"},{"location":"#citing-pathintegrate","text":"If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Citing PathIntegrate"},{"location":"input/","text":"Input data for PathIntegrate Omics data Pathways","title":"Input data"},{"location":"input/#input-data-for-pathintegrate","text":"","title":"Input data for PathIntegrate"},{"location":"input/#omics-data","text":"","title":"Omics data"},{"location":"input/#pathways","text":"","title":"Pathways"},{"location":"gendocs_docs/","text":"PathIntegrate PathIntegrate Python package for pathway-based multi-omics data integration Features Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results Installation pip install -i https://test.pypi.org/simple/ PathIntegrate Tutorials and documentation Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page Citing PathIntegrate If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"PathIntegrate"},{"location":"gendocs_docs/#pathintegrate","text":"PathIntegrate Python package for pathway-based multi-omics data integration","title":"PathIntegrate"},{"location":"gendocs_docs/#features","text":"Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results","title":"Features"},{"location":"gendocs_docs/#installation","text":"pip install -i https://test.pypi.org/simple/ PathIntegrate","title":"Installation"},{"location":"gendocs_docs/#tutorials-and-documentation","text":"Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page","title":"Tutorials and documentation"},{"location":"gendocs_docs/#citing-pathintegrate","text":"If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Citing PathIntegrate"},{"location":"gendocs_docs/reference/pathintegrate/","text":"PathIntegrate source PathIntegrate ( omics_data : dict , metadata , pathway_source , sspa_scoring = sspa . sspa_SVD , min_coverage = 3 ) Methods: .get_multi_omics_coverage source . get_multi_omics_coverage () .MultiView source . MultiView ( ncomp = 2 ) .SingleView source . SingleView ( model = sklearn . linear_model . LogisticRegression , model_params = None ) Fits a PathIntegrate SingleView model using an SKLearn-compatible predictive model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. Returns object : Fitted PathIntegrate SingleView model. .SingleViewCV source . SingleViewCV ( model = sklearn . linear_model . LogisticRegression , model_params = None , cv_params = None ) .SingleViewGridSearchCV source . SingleViewGridSearchCV ( param_grid , model = sklearn . linear_model . LogisticRegression , grid_search_params = None ) .MultiViewCV source . MultiViewCV () .MultiViewGridSearchCV source . MultiViewGridSearchCV ()","title":"Pathintegrate"},{"location":"gendocs_docs/reference/pathintegrate/#_1","text":"","title":""},{"location":"gendocs_docs/reference/pathintegrate/#pathintegrate","text":"source PathIntegrate ( omics_data : dict , metadata , pathway_source , sspa_scoring = sspa . sspa_SVD , min_coverage = 3 ) Methods:","title":"PathIntegrate"},{"location":"gendocs_docs/reference/pathintegrate/#get_multi_omics_coverage","text":"source . get_multi_omics_coverage ()","title":".get_multi_omics_coverage"},{"location":"gendocs_docs/reference/pathintegrate/#multiview","text":"source . MultiView ( ncomp = 2 )","title":".MultiView"},{"location":"gendocs_docs/reference/pathintegrate/#singleview","text":"source . SingleView ( model = sklearn . linear_model . LogisticRegression , model_params = None ) Fits a PathIntegrate SingleView model using an SKLearn-compatible predictive model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. Returns object : Fitted PathIntegrate SingleView model.","title":".SingleView"},{"location":"gendocs_docs/reference/pathintegrate/#singleviewcv","text":"source . SingleViewCV ( model = sklearn . linear_model . LogisticRegression , model_params = None , cv_params = None )","title":".SingleViewCV"},{"location":"gendocs_docs/reference/pathintegrate/#singleviewgridsearchcv","text":"source . SingleViewGridSearchCV ( param_grid , model = sklearn . linear_model . LogisticRegression , grid_search_params = None )","title":".SingleViewGridSearchCV"},{"location":"gendocs_docs/reference/pathintegrate/#multiviewcv","text":"source . MultiViewCV ()","title":".MultiViewCV"},{"location":"gendocs_docs/reference/pathintegrate/#multiviewgridsearchcv","text":"source . MultiViewGridSearchCV ()","title":".MultiViewGridSearchCV"}]}
\ No newline at end of file
+{"config":{"indexing":"full","lang":["en"],"min_search_length":3,"prebuild_index":false,"separator":"[\\s\\-]+"},"docs":[{"location":"","text":"PathIntegrate PathIntegrate Python package for pathway-based multi-omics data integration Features Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results Installation pip install -i https://test.pypi.org/simple/ PathIntegrate Tutorials and documentation Please see our Quickstart guide on Google Colab Citing PathIntegrate If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Home"},{"location":"#pathintegrate","text":"PathIntegrate Python package for pathway-based multi-omics data integration","title":"PathIntegrate"},{"location":"#features","text":"Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results","title":"Features"},{"location":"#installation","text":"pip install -i https://test.pypi.org/simple/ PathIntegrate","title":"Installation"},{"location":"#tutorials-and-documentation","text":"Please see our Quickstart guide on Google Colab","title":"Tutorials and documentation"},{"location":"#citing-pathintegrate","text":"If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Citing PathIntegrate"},{"location":"input/","text":"Input data for PathIntegrate Omics data Pathways","title":"Input data"},{"location":"input/#input-data-for-pathintegrate","text":"","title":"Input data for PathIntegrate"},{"location":"input/#omics-data","text":"","title":"Omics data"},{"location":"input/#pathways","text":"","title":"Pathways"},{"location":"gendocs_docs/","text":"PathIntegrate PathIntegrate Python package for pathway-based multi-omics data integration Features Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results Installation pip install -i https://test.pypi.org/simple/ PathIntegrate Tutorials and documentation Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page Citing PathIntegrate If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"PathIntegrate"},{"location":"gendocs_docs/#pathintegrate","text":"PathIntegrate Python package for pathway-based multi-omics data integration","title":"PathIntegrate"},{"location":"gendocs_docs/#features","text":"Pathway-based multi-omics data integration using PathIntegrate Multi-View and Single-View models Multi-View model: Integrates multiple omics datasets using a shared pathway-based latent space Single-View model: Integrates multi-omics data into one set of multi-omics pathway scores and applies an SKlearn-compatible predictive model Pathway importance Sample prediction SKlearn-like API for easy integration into existing pipelines Support for multiple pathway databases, including KEGG and Reactome Support for multiple pathway scoring methods available via the sspa package Cytoscape Network Viewer app for visualizing pathway-based multi-omics data integration results","title":"Features"},{"location":"gendocs_docs/#installation","text":"pip install -i https://test.pypi.org/simple/ PathIntegrate","title":"Installation"},{"location":"gendocs_docs/#tutorials-and-documentation","text":"Please see our Quickstart guide on Google Colab Full documentation and function reference for PathIntegrate can be found via our ReadTheDocs page","title":"Tutorials and documentation"},{"location":"gendocs_docs/#citing-pathintegrate","text":"If you use PathIntegrate in your research, please cite our paper: PathIntegrate: Multivariate modelling approaches for pathway-based multi-omics data integration Cecilia Wieder, Juliette Cooke, Clement Frainay, Nathalie Poupin, Jacob G. Bundy, Russell Bowler, Fabien Jourdan, Katerina J. Kechris, Rachel PJ Lai, Timothy Ebbels Manuscript in preparation","title":"Citing PathIntegrate"},{"location":"gendocs_docs/reference/pathintegrate/","text":"PathIntegrate source PathIntegrate ( omics_data : dict , metadata , pathway_source , sspa_scoring = sspa . sspa_SVD , min_coverage = 3 ) PathIntegrate class for multi-omics pathway integration. Args omics_data (dict) : Dictionary of omics data. Keys are omics names, values are pandas DataFrames containing omics data where rows contain samples and columns reprsent features. metadata (pandas.Series) : Metadata for samples. Index is sample names, values are class labels. pathway_source (pandas.DataFrame) : GMT style pathway source data. Must contain column 'Pathway_name'. sspa_scoring (object, optional) : Scoring method for ssPA. Defaults to sspa.sspa_SVD. Options are sspa.sspa_SVD, sspa.sspa_ssGSEA, sspa.sspa_KPCA, sspa.sspa_ssClustPA, sspa.sspa_zscore. min_coverage (int, optional) : Minimum number of molecules required in a pathway. Defaults to 3. Attributes omics_data (dict) : Dictionary of omics data. Keys are omics names, values are pandas DataFrames. omics_data_scaled (dict) : Dictionary of omics data scaled to mean 0 and unit variance. Keys are omics names, values are pandas DataFrames. metadata (pandas.Series) : Metadata for samples. Index is sample names, values are class labels. pathway_source (pandas.DataFrame) : Pathway source data. pathway_dict (dict) : Dictionary of pathways. Keys are pathway names, values are lists of molecules. sspa_scoring (object) : Scoring method for SSPA. min_coverage (int) : Minimum number of omics required to cover a pathway. sspa_method (object) : SSPA scoring method. sspa_scores_mv (dict) : Dictionary of SSPA scores for each omics data. Keys are omics names, values are pandas DataFrames. sspa_scores_sv (pandas.DataFrame) : SSPA scores for all omics data concatenated. coverage (dict) : Dictionary of pathway coverage. Keys are pathway names, values are number of omics covering the pathway. mv (object) : Fitted MultiView model. sv (object) : Fitted SingleView model. labels (pandas.Series) : Class labels for samples. Index is sample names, values are class labels. Methods: .get_multi_omics_coverage source . get_multi_omics_coverage () .MultiView source . MultiView ( ncomp = 2 ) Fits a PathIntegrate MultiView model using MBPLS. Args ncomp (int, optional) : Number of components. Defaults to 2. Returns object : Fitted PathIntegrate MultiView model. .SingleView source . SingleView ( model = sklearn . linear_model . LogisticRegression , model_params = None ) Fits a PathIntegrate SingleView model using an SKLearn-compatible predictive model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. Returns object : Fitted PathIntegrate SingleView model. .SingleViewCV source . SingleViewCV ( model = sklearn . linear_model . LogisticRegression , model_params = None , cv_params = None ) Cross-validation for SingleView model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. cv_params (dict, optional) : Cross-validation parameters. Defaults to None. Returns object : Cross-validation results. .SingleViewGridSearchCV source . SingleViewGridSearchCV ( param_grid , model = sklearn . linear_model . LogisticRegression , grid_search_params = None ) Grid search cross-validation for SingleView model. Args param_grid (dict) : Grid search parameters. model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. grid_search_params (dict, optional) : Grid search parameters. Defaults to None. Returns object : GridSearchCV object. .MultiViewCV source . MultiViewCV () Cross-validation for MultiView model. Returns object : Cross-validation results. .MultiViewGridSearchCV source . MultiViewGridSearchCV ()","title":"Pathintegrate"},{"location":"gendocs_docs/reference/pathintegrate/#_1","text":"","title":""},{"location":"gendocs_docs/reference/pathintegrate/#pathintegrate","text":"source PathIntegrate ( omics_data : dict , metadata , pathway_source , sspa_scoring = sspa . sspa_SVD , min_coverage = 3 ) PathIntegrate class for multi-omics pathway integration. Args omics_data (dict) : Dictionary of omics data. Keys are omics names, values are pandas DataFrames containing omics data where rows contain samples and columns reprsent features. metadata (pandas.Series) : Metadata for samples. Index is sample names, values are class labels. pathway_source (pandas.DataFrame) : GMT style pathway source data. Must contain column 'Pathway_name'. sspa_scoring (object, optional) : Scoring method for ssPA. Defaults to sspa.sspa_SVD. Options are sspa.sspa_SVD, sspa.sspa_ssGSEA, sspa.sspa_KPCA, sspa.sspa_ssClustPA, sspa.sspa_zscore. min_coverage (int, optional) : Minimum number of molecules required in a pathway. Defaults to 3. Attributes omics_data (dict) : Dictionary of omics data. Keys are omics names, values are pandas DataFrames. omics_data_scaled (dict) : Dictionary of omics data scaled to mean 0 and unit variance. Keys are omics names, values are pandas DataFrames. metadata (pandas.Series) : Metadata for samples. Index is sample names, values are class labels. pathway_source (pandas.DataFrame) : Pathway source data. pathway_dict (dict) : Dictionary of pathways. Keys are pathway names, values are lists of molecules. sspa_scoring (object) : Scoring method for SSPA. min_coverage (int) : Minimum number of omics required to cover a pathway. sspa_method (object) : SSPA scoring method. sspa_scores_mv (dict) : Dictionary of SSPA scores for each omics data. Keys are omics names, values are pandas DataFrames. sspa_scores_sv (pandas.DataFrame) : SSPA scores for all omics data concatenated. coverage (dict) : Dictionary of pathway coverage. Keys are pathway names, values are number of omics covering the pathway. mv (object) : Fitted MultiView model. sv (object) : Fitted SingleView model. labels (pandas.Series) : Class labels for samples. Index is sample names, values are class labels. Methods:","title":"PathIntegrate"},{"location":"gendocs_docs/reference/pathintegrate/#get_multi_omics_coverage","text":"source . get_multi_omics_coverage ()","title":".get_multi_omics_coverage"},{"location":"gendocs_docs/reference/pathintegrate/#multiview","text":"source . MultiView ( ncomp = 2 ) Fits a PathIntegrate MultiView model using MBPLS. Args ncomp (int, optional) : Number of components. Defaults to 2. Returns object : Fitted PathIntegrate MultiView model.","title":".MultiView"},{"location":"gendocs_docs/reference/pathintegrate/#singleview","text":"source . SingleView ( model = sklearn . linear_model . LogisticRegression , model_params = None ) Fits a PathIntegrate SingleView model using an SKLearn-compatible predictive model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. Returns object : Fitted PathIntegrate SingleView model.","title":".SingleView"},{"location":"gendocs_docs/reference/pathintegrate/#singleviewcv","text":"source . SingleViewCV ( model = sklearn . linear_model . LogisticRegression , model_params = None , cv_params = None ) Cross-validation for SingleView model. Args model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. model_params ( type , optional) : Model-specific hyperparameters. Defaults to None. cv_params (dict, optional) : Cross-validation parameters. Defaults to None. Returns object : Cross-validation results.","title":".SingleViewCV"},{"location":"gendocs_docs/reference/pathintegrate/#singleviewgridsearchcv","text":"source . SingleViewGridSearchCV ( param_grid , model = sklearn . linear_model . LogisticRegression , grid_search_params = None ) Grid search cross-validation for SingleView model. Args param_grid (dict) : Grid search parameters. model (object, optional) : SKlearn prediction model class. Defaults to sklearn.linear_model.LogisticRegression. grid_search_params (dict, optional) : Grid search parameters. Defaults to None. Returns object : GridSearchCV object.","title":".SingleViewGridSearchCV"},{"location":"gendocs_docs/reference/pathintegrate/#multiviewcv","text":"source . MultiViewCV () Cross-validation for MultiView model. Returns object : Cross-validation results.","title":".MultiViewCV"},{"location":"gendocs_docs/reference/pathintegrate/#multiviewgridsearchcv","text":"source . MultiViewGridSearchCV ()","title":".MultiViewGridSearchCV"}]}
\ No newline at end of file
diff --git a/sitemap.xml b/sitemap.xml
index 8ea19d5..2968285 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -2,22 +2,22 @@
None
- 2023-10-02
+ 2023-10-09
daily
None
- 2023-10-02
+ 2023-10-09
daily
None
- 2023-10-02
+ 2023-10-09
daily
None
- 2023-10-02
+ 2023-10-09
daily
\ No newline at end of file
diff --git a/sitemap.xml.gz b/sitemap.xml.gz
index 0cc8a0525f370dbb1704c46eb74fe1210606264b..10eaeabf8a94504d9a072ae0b8ad3c65fcfaa68f 100644
GIT binary patch
literal 199
zcmV;&06702iwFokV6UkIF2OfsCqF3;(QB1c4-K(nm|d3`3|L;4lHUeW}M__XBC4)txs&n>T}vvk>8n{KJ0^pIiDE{sHp%0MQs6$9+X{85X
z2qw%Bh%6etz2s+{oWRO$_U+p@`!&n!S8vf%2Qc1MxF8H8?UZkfYb$)cobo-cMaCb&
zf{rMK9aOlBaX3;sjw1mRbuR}XKC~26mj+l7SK
z`$m+k+~oz!S(zfMw~47vx>nzUzKcd0`{s1xEJXT6{^37|&nN#No005!_
BUi$z5