forked from cogsys-tuebingen/muse_armcl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plugins.xml
99 lines (91 loc) · 5.14 KB
/
plugins.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
<library path="libmuse_armcl_lib">
<!-- Mesh Map Loader -->
<class type="muse_armcl::MeshMapLoader" base_class_type="muse_armcl::MeshMapProvider">
<description>Provides mesh map, looks up transformations between links at each step.</description>
</class>
<class type="muse_armcl::MeshMapLoaderOffline" base_class_type="muse_armcl::MeshMapProvider">
<description>Provides mesh map, looks up transformations between links at each step.</description>
</class>
<!-- Sampling -->
<class type="muse_armcl::Normal" base_class_type="muse_armcl::NormalSampling">
<description>Implements normal sampling.</description>
</class>
<class type="muse_armcl::UniformAllLinks" base_class_type="muse_armcl::UniformSampling">
<description>Implements uniform sampling on all maps and links.</description>
</class>
<class type="muse_armcl::UniformPerLink" base_class_type="muse_armcl::UniformSampling">
<description>Implements uniform sampling per link, same amount of particles on each link.</description>
</class>
<!-- Resampling -->
<class type="muse_armcl::KLD" base_class_type="muse_armcl::Resampling">
<description>Implements KLD resampling.</description>
</class>
<class type="muse_armcl::KLDRandom" base_class_type="muse_armcl::Resampling">
<description>Implements KLD resampling plus uniform sampling.</description>
</class>
<class type="muse_armcl::SIR" base_class_type="muse_armcl::Resampling">
<description>Implements SIR resampling.</description>
</class>
<class type="muse_armcl::Residual" base_class_type="muse_armcl::Resampling">
<description>Implements Residual resampling.</description>
</class>
<class type="muse_armcl::Stratified" base_class_type="muse_armcl::Resampling">
<description>Implements Stratified resampling.</description>
</class>
<class type="muse_armcl::Systematic" base_class_type="muse_armcl::Resampling">
<description>Implements Systematic resampling.</description>
</class>
<class type="muse_armcl::WheelOfFortune" base_class_type="muse_armcl::Resampling">
<description>Implements WheelOfFortune resampling.</description>
</class>
<!-- Scheduling -->
<class type="muse_armcl::Rate" base_class_type="muse_armcl::Scheduler">
<description>Implements Rate scheduling.</description>
</class>
<class type="muse_armcl::CFS" base_class_type="muse_armcl::Scheduler">
<description>Implements CFS scheduling.</description>
</class>
<class type="muse_armcl::Dummy" base_class_type="muse_armcl::Scheduler">
<description>Implements Dummy scheduling, always allows resampling.</description>
</class>
<class type="muse_armcl::IntegrateAll" base_class_type="muse_armcl::Scheduler">
<description>Integrates all data for offline evaluation, always allows resampling.</description>
</class>
<!-- Density -->
<class type="muse_armcl::Dominants" base_class_type="muse_armcl::SampleDensity">
<description>Implements density estimation, where the most dominant particle is estimated per cluster.</description>
</class>
<class type="muse_armcl::Means" base_class_type="muse_armcl::SampleDensity">
<description>Implements density estimation, where the particle closest to the mean is estimated per cluster.</description>
</class>
<class type="muse_armcl::WeightedMeans" base_class_type="muse_armcl::SampleDensity">
<description>Implements density estimation, where the particle closest to the weighted mean is estimated per cluster.</description>
</class>
<class type="muse_armcl::NearestNeighborDensity" base_class_type="muse_armcl::SampleDensity">
<description>Clustering on the surface of directly.</description>
</class>
<class type="muse_armcl::ContactPointHistogram" base_class_type="muse_armcl::SampleDensity">
<description>Histogram clustering sorts particles into discrete bins per joint.</description>
</class>
<class type="muse_armcl::ContactPointHistogramMin" base_class_type="muse_armcl::SampleDensity">
<description>Histogram clustering sorts particles into discrete by optimizing distance and orientation.</description>
</class>
<!-- Data Providers -->
<class type="muse_armcl::JointStateProvider" base_class_type="cslibs_plugins_data::DataProvider">
<description>Provides joint states.</description>
</class>
<!-- Prediction Models -->
<class type="muse_armcl::RandomWalk" base_class_type="muse_armcl::PredictionModel">
<description>Prediction via random walk.</description>
</class>
<!-- Update Models -->
<class type="muse_armcl::DummyUpdateModel" base_class_type="muse_armcl::UpdateModel">
<description>Dummy update model, doesn't do anything, only for demonstration.</description>
</class>
<class type="muse_armcl::NormalizedUpdateModel" base_class_type="muse_armcl::UpdateModel">
<description>Minimizes the orientation between the nD residual vector.</description>
</class>
<class type="muse_armcl::NormalizedConeUpdateModel" base_class_type="muse_armcl::UpdateModel">
<description>Minimizes the orientation between the nD residual vector using also foces differing from mesh normals.</description>
</class>
</library>