-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo_video.py
292 lines (251 loc) · 11 KB
/
yolo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# import the necessary packages
import numpy as np
import imutils
import time
from scipy import spatial
import cv2
from input_retrieval import *
#All these classes will be counted as 'vehicles'
list_of_vehicles = ["bicycle","car","motorbike","bus","truck", "train","fire"]
# Setting the threshold for the number of frames to search a vehicle for
FRAMES_BEFORE_CURRENT = 10
inputWidth, inputHeight = 416, 416
#Parse command line arguments and extract the values required
LABELS, weightsPath, configPath, inputVideoPath, outputVideoPath,\
preDefinedConfidence, preDefinedThreshold, USE_GPU= parseCommandLineArguments()
# Initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# PURPOSE: Displays the vehicle count on the top-left corner of the frame
# PARAMETERS: Frame on which the count is displayed, the count number of vehicles
# RETURN: N/A
def displayVehicleCount(frame, vehicle_count):
cv2.putText(
frame, #Image
'Detected Vehicles: ' + str(vehicle_count), #Label
(20, 20), #Position
cv2.FONT_HERSHEY_SIMPLEX, #Font
0.8, #Size
(0, 0xFF, 0), #Color
2, #Thickness
cv2.FONT_HERSHEY_COMPLEX_SMALL,
)
# PURPOSE: Determining if the box-mid point cross the line or are within the range of 5 units
# from the line
# PARAMETERS: X Mid-Point of the box, Y mid-point of the box, Coordinates of the line
# RETURN:
# - True if the midpoint of the box overlaps with the line within a threshold of 5 units
# - False if the midpoint of the box lies outside the line and threshold
def boxAndLineOverlap(x_mid_point, y_mid_point, line_coordinates):
x1_line, y1_line, x2_line, y2_line = line_coordinates #Unpacking
if (x_mid_point >= x1_line and x_mid_point <= x2_line+5) and\
(y_mid_point >= y1_line and y_mid_point <= y2_line+5):
return True
return False
# PURPOSE: Displaying the FPS of the detected video
# PARAMETERS: Start time of the frame, number of frames within the same second
# RETURN: New start time, new number of frames
def displayFPS(start_time, num_frames):
current_time = int(time.time())
if(current_time > start_time):
os.system('clear') # Equivalent of CTRL+L on the terminal
print("FPS:", num_frames)
num_frames = 0
start_time = current_time
return start_time, num_frames
# PURPOSE: Draw all the detection boxes with a green dot at the center
# RETURN: N/A
def drawDetectionBoxes(idxs, boxes, classIDs, confidences, frame):
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indices we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
#Draw a green dot in the middle of the box
cv2.circle(frame, (x + (w//2), y+ (h//2)), 2, (0, 0xFF, 0), thickness=2)
# PURPOSE: Initializing the video writer with the output video path and the same number
# of fps, width and height as the source video
# PARAMETERS: Width of the source video, Height of the source video, the video stream
# RETURN: The initialized video writer
def initializeVideoWriter(video_width, video_height, videoStream):
# Getting the fps of the source video
sourceVideofps = videoStream.get(cv2.CAP_PROP_FPS)
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
return cv2.VideoWriter(outputVideoPath, fourcc, sourceVideofps,
(video_width, video_height), True)
# PURPOSE: Identifying if the current box was present in the previous frames
# PARAMETERS: All the vehicular detections of the previous frames,
# the coordinates of the box of previous detections
# RETURN: True if the box was current box was present in the previous frames;
# False if the box was not present in the previous frames
def boxInPreviousFrames(previous_frame_detections, current_box, current_detections):
centerX, centerY, width, height = current_box
dist = np.inf #Initializing the minimum distance
# Iterating through all the k-dimensional trees
for i in range(FRAMES_BEFORE_CURRENT):
coordinate_list = list(previous_frame_detections[i].keys())
if len(coordinate_list) == 0: # When there are no detections in the previous frame
continue
# Finding the distance to the closest point and the index
temp_dist, index = spatial.KDTree(coordinate_list).query([(centerX, centerY)])
if (temp_dist < dist):
dist = temp_dist
frame_num = i
coord = coordinate_list[index[0]]
if (dist > (max(width, height)/2)):
return False
# Keeping the vehicle ID constant
current_detections[(centerX, centerY)] = previous_frame_detections[frame_num][coord]
return True
def count_vehicles(idxs, boxes, classIDs, vehicle_count, previous_frame_detections, frame):
current_detections = {}
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indices we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
centerX = x + (w//2)
centerY = y+ (h//2)
# When the detection is in the list of vehicles, AND
# it crosses the line AND
# the ID of the detection is not present in the vehicles
if (LABELS[classIDs[i]] in list_of_vehicles):
current_detections[(centerX, centerY)] = vehicle_count
if (not boxInPreviousFrames(previous_frame_detections, (centerX, centerY, w, h), current_detections)):
vehicle_count += 1
# vehicle_crossed_line_flag += True
# else: #ID assigning
#Add the current detection mid-point of box to the list of detected items
# Get the ID corresponding to the current detection
ID = current_detections.get((centerX, centerY))
# If there are two detections having the same ID due to being too close,
# then assign a new ID to current detection.
if (list(current_detections.values()).count(ID) > 1):
current_detections[(centerX, centerY)] = vehicle_count
vehicle_count += 1
#Display the ID at the center of the box
cv2.putText(frame, str(ID), (centerX, centerY),\
cv2.FONT_HERSHEY_SIMPLEX, 0.5, [0,0,255], 2)
return vehicle_count, current_detections
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
#Using GPU if flag is passed
if USE_GPU:
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# initialize the video stream, pointer to output video file, and
# frame dimensions
videoStream = cv2.VideoCapture(inputVideoPath)
video_width = int(videoStream.get(cv2.CAP_PROP_FRAME_WIDTH))
video_height = int(videoStream.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Specifying coordinates for a default line
x1_line = 0
y1_line = video_height//2
x2_line = video_width
y2_line = video_height//2
#Initialization
previous_frame_detections = [{(0,0):0} for i in range(FRAMES_BEFORE_CURRENT)]
# previous_frame_detections = [spatial.KDTree([(0,0)])]*FRAMES_BEFORE_CURRENT # Initializing all trees
num_frames, vehicle_count = 0, 0
writer = initializeVideoWriter(video_width, video_height, videoStream)
start_time = int(time.time())
# loop over frames from the video file stream
while True:
print("================NEW FRAME================")
num_frames+= 1
print("FRAME:\t", num_frames)
# Initialization for each iteration
boxes, confidences, classIDs = [], [], []
vehicle_crossed_line_flag = False
#Calculating fps each second
start_time, num_frames = displayFPS(start_time, num_frames)
# read the next frame from the file
(grabbed, frame) = videoStream.read()
# if the frame was not grabbed, then we have reached the end of the stream
if not grabbed:
break
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (inputWidth, inputHeight),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for i, detection in enumerate(output):
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > preDefinedConfidence:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([video_width, video_height, video_width, video_height])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
#Printing the info of the detection
#print('\nName:\t', LABELS[classID],
#'\t|\tBOX:\t', x,y)
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# # Changing line color to green if a vehicle in the frame has crossed the line
# if vehicle_crossed_line_flag:
# cv2.line(frame, (x1_line, y1_line), (x2_line, y2_line), (0, 0xFF, 0), 2)
# # Changing line color to red if a vehicle in the frame has not crossed the line
# else:
# cv2.line(frame, (x1_line, y1_line), (x2_line, y2_line), (0, 0, 0xFF), 2)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, preDefinedConfidence,
preDefinedThreshold)
# Draw detection box
drawDetectionBoxes(idxs, boxes, classIDs, confidences, frame)
vehicle_count, current_detections = count_vehicles(idxs, boxes, classIDs, vehicle_count, previous_frame_detections, frame)
# Display Vehicle Count if a vehicle has passed the line
displayVehicleCount(frame, vehicle_count)
# write the output frame to disk
writer.write(frame)
cv2.imshow('Frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Updating with the current frame detections
previous_frame_detections.pop(0) #Removing the first frame from the list
# previous_frame_detections.append(spatial.KDTree(current_detections))
previous_frame_detections.append(current_detections)
# release the file pointers
print("[INFO] cleaning up...")
writer.release()
videoStream.release()