This repository provides a reference implementation of MECCH as described in the following paper.
MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural Networks
Xinyu Fu, Irwin King
Neural Networks 170 (2024) 266-275
Also available at arXiv:2211.12792.
- PyTorch 1.10
- DGL 0.7
- scikit-learn
- tqdm
python main.py [-h] --model MODEL --dataset DATASET [--task TASK] [--gpu GPU] [--config CONFIG] [--repeat REPEAT]
optional arguments:
-h, --help show this help message and exit
--model MODEL, -m MODEL
name of model
--dataset DATASET, -d DATASET
name of dataset
--task TASK, -t TASK type of task
--gpu GPU, -g GPU which gpu to use, specify -1 to use CPU
--config CONFIG, -c CONFIG
config file for model hyperparameters
--repeat REPEAT, -r REPEAT
repeat the training and testing for N times
Before running the script, you need to first download and extract the datasets into correct locations. Please refer to the respective dataset README above.
After data preparation, the code can be easily run. For example, to run MECCH on the IMDB dataset for node classification using GPU, use the following command:
python main.py -m MECCH -t node_classification -d imdb-gtn -g 0
To run MECCH on the LastFM dataset for link prediction using GPU, use the following command:
python main.py -m MECCH -t link_prediction -d lastfm -g 0
If you find MECCH useful in your research, please cite the following paper:
@article{fu2024mecch,
author = {Xinyu Fu and
Irwin King},
title = {{MECCH:} Metapath Context Convolution-based Heterogeneous Graph Neural
Networks},
journal = {Neural Networks},
volume = {170},
pages = {266--275},
year = {2024}
}