We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Example code:
from diffusers import AutoPipelineForInpainting, DPMSolverMultistepScheduler import torch from diffusers.utils import load_image, make_image_grid from compel import Compel, ReturnedEmbeddingsType pipeline = AutoPipelineForInpainting.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda") compel_proc = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] , text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True],device="cuda" ) prompt_embeds, pooled_prompt_embeds = compel_proc("whatever you want") negative_prompt_embeds, pooled_negative_prompt_embeds = compel_proc("whatever you don't want") image = pipeline( prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_negative_prompt_embeds=pooled_negative_prompt_embeds, image=img_original, mask_image=mask, generator=generator, num_inference_steps=50, strength=1, ).images[0]
Error:
ile /databricks/python/lib/python3.10/site-packages/torch/utils/_contextlib.py:115, in context_decorator.<locals>.decorate_context(*args, **kwargs) 112 @functools.wraps(func) 113 def decorate_context(*args, **kwargs): 114 with ctx_factory(): --> 115 return func(*args, **kwargs) File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py:1547, in StableDiffusionXLInpaintPipeline.__call__(self, prompt, prompt_2, image, mask_image, masked_image_latents, height, width, padding_mask_crop, strength, num_inference_steps, timesteps, denoising_start, denoising_end, guidance_scale, negative_prompt, negative_prompt_2, num_images_per_prompt, eta, generator, latents, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, output_type, return_dict, cross_attention_kwargs, guidance_rescale, original_size, crops_coords_top_left, target_size, negative_original_size, negative_crops_coords_top_left, negative_target_size, aesthetic_score, negative_aesthetic_score, clip_skip, callback_on_step_end, callback_on_step_end_tensor_inputs, **kwargs) 1537 # 3. Encode input prompt 1538 text_encoder_lora_scale = ( 1539 self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None 1540 ) 1542 ( 1543 prompt_embeds, 1544 negative_prompt_embeds, 1545 pooled_prompt_embeds, 1546 negative_pooled_prompt_embeds, -> 1547 ) = self.encode_prompt( 1548 prompt=prompt, 1549 prompt_2=prompt_2, 1550 device=device, 1551 num_images_per_prompt=num_images_per_prompt, 1552 do_classifier_free_guidance=self.do_classifier_free_guidance, 1553 negative_prompt=negative_prompt, 1554 negative_prompt_2=negative_prompt_2, 1555 prompt_embeds=prompt_embeds, 1556 negative_prompt_embeds=negative_prompt_embeds, 1557 pooled_prompt_embeds=pooled_prompt_embeds, 1558 negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, 1559 lora_scale=text_encoder_lora_scale, 1560 clip_skip=self.clip_skip, 1561 ) 1563 # 4. set timesteps 1564 def denoising_value_valid(dnv): File /local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.10/site-packages/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py:734, in StableDiffusionXLInpaintPipeline.encode_prompt(self, prompt, prompt_2, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, negative_prompt_2, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, lora_scale, clip_skip) 731 negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) 732 negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) --> 734 pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( 735 bs_embed * num_images_per_prompt, -1 736 ) 737 if do_classifier_free_guidance: 738 negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( 739 bs_embed * num_images_per_prompt, -1 740 ) AttributeError: 'NoneType' object has no attribute 'repeat'
Thanks in advance!
The text was updated successfully, but these errors were encountered:
Still getting this error
Sorry, something went wrong.
what happens when you run this:
prompt_embeds, pooled_prompt_embeds = compel_proc("whatever you want") print('pooled positive:', pooled_prompt_embeds) negative_prompt_embeds, pooled_negative_prompt_embeds = compel_proc("whatever you don't want") print('pooled negative:', pooled_negative_prompt_embeds)
?
https://huggingface.co/docs/diffusers/using-diffusers/weighted_prompts#stable-diffusion-xl
This worked for me
No branches or pull requests
Example code:
Error:
Thanks in advance!
The text was updated successfully, but these errors were encountered: