forked from rougier/ten-rules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure-8.py
58 lines (44 loc) · 1.93 KB
/
figure-8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.xkcd()
X = np.linspace(0,2.32,100)
Y = X*X - 5*np.exp(-5*(X-2)*(X-2))
fig = plt.figure(figsize=(12,5), dpi=72,facecolor="white")
axes = plt.subplot(111)
plt.plot(X,Y, color = 'k', linewidth=2, linestyle="-", zorder=+10)
axes.set_xlim(X.min(),X.max())
axes.set_ylim(1.01*Y.min(), 1.01*Y.max())
axes.spines['right'].set_color('none')
axes.spines['top'].set_color('none')
axes.xaxis.set_ticks_position('bottom')
axes.spines['bottom'].set_position(('data',0))
axes.yaxis.set_ticks_position('left')
axes.spines['left'].set_position(('data',X.min()))
axes.set_xticks([])
axes.set_yticks([])
axes.set_xlim( 1.05*X.min(), 1.10*X.max() )
axes.set_ylim( 1.15*Y.min(), 1.05*Y.max() )
t = [10,40,82,88,93,99]
plt.scatter( X[t], Y[t], s=50, zorder=+12, c='k')
plt.text(X[t[0]]-.1, Y[t[0]]+.1, "Industrial\nRobot", ha='left', va='bottom')
plt.text(X[t[1]]-.15, Y[t[1]]+.1, "Humanoid\nRobot", ha='left', va='bottom')
plt.text(X[t[2]]-.25, Y[t[2]], "Zombie", ha='left', va='center')
plt.text(X[t[3]]+.05, Y[t[3]], "Prosthetic\nHand", ha='left', va='center')
plt.text(X[t[4]]+.05, Y[t[4]], "Bunraku\nPuppet", ha='left', va='center')
plt.text(X[t[5]]+.05, Y[t[5]], "Human", ha='left', va='center')
plt.text(X[t[2]]-0.05, 1.5, "Uncanny\nValley", ha='center', va='center', fontsize=24)
plt.ylabel("- Comfort Level +",y=.5, fontsize=20)
plt.text(.05, -.1, "Human Likeness ->",ha='left', va='top', color='r', fontsize=20)
X = np.linspace(0,1.1*2.32,100)
axes.fill_between(X, 0, -10, color = '0.85', zorder=-1)
axes.fill_between(X, 0, +10, color = (1.0,1.0,0.9), zorder=-1)
#X = np.linspace(1.652,2.135,100)
X = np.linspace(1.5,2.25,100)
Y = X*X - 5*np.exp(-5*(X-2)*(X-2))
axes.fill_between(X, Y, +10, color = (1,1,1), zorder=-1)
axes.axvline(x=1.5,ymin=0,ymax=1, color='.5', ls='--')
axes.axvline(x=2.25,ymin=0,ymax=1, color='.5', ls='--')
plt.savefig("figure-8.pdf")
plt.show()