forked from karpathy/build-nanogpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hellaswag.py
177 lines (152 loc) · 7.53 KB
/
hellaswag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""
Downloads and evaluates HellaSwag in Python.
https://github.com/rowanz/hellaswag
Example HellaSwag json item:
{"ind": 24, "activity_label": "Roof shingle removal", "ctx_a": "A man is sitting on a roof.", "ctx_b": "he", "ctx": "A man is sitting on a roof. he", "split": "val", "split_type": "indomain", "label": 3, "endings": ["is using wrap to wrap a pair of skis.", "is ripping level tiles off.", "is holding a rubik's cube.", "starts pulling up roofing on a roof."], "source_id": "activitynet~v_-JhWjGDPHMY"}
ind: dataset ID
activity_label: The ActivityNet or WikiHow label for this example
context: There are two formats. The full context is in ctx. When the context ends in an (incomplete) noun phrase, like for ActivityNet, this incomplete noun phrase is in ctx_b, and the context up until then is in ctx_a. This can be useful for models such as BERT that need the last sentence to be complete. However, it's never required. If ctx_b is nonempty, then ctx is the same thing as ctx_a, followed by a space, then ctx_b.
endings: a list of 4 endings. The correct index is given by label (0,1,2, or 3)
split: train, val, or test.
split_type: indomain if the activity label is seen during training, else zeroshot
source_id: Which video or WikiHow article this example came from
gpt2 (124M)
- eleuther harness reports acc 28.92%, acc_norm 31.14% (multiple choice style)
- this script: 10042 acc: 0.2859 acc_norm: 0.2955 (completion style)
gpt2-xl (1558M)
- eleuther harness reports acc 40.04%, acc_norm 50.89% (multiple choice style)
- this script: 10042 acc: 0.3842 acc_norm: 0.4893 (completion style)
The validation set of HellaSwag has a total of 10,042 examples.
"""
import os
import json
import requests
import tiktoken
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.nn import functional as F
from transformers import GPT2LMHeadModel
# -----------------------------------------------------------------------------
DATA_CACHE_DIR = os.path.join(os.path.dirname(__file__), "hellaswag")
def download_file(url: str, fname: str, chunk_size=1024):
"""Helper function to download a file from a given url"""
resp = requests.get(url, stream=True)
total = int(resp.headers.get("content-length", 0))
with open(fname, "wb") as file, tqdm(
desc=fname,
total=total,
unit="iB",
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
hellaswags = {
"train": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_train.jsonl",
"val": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl",
"test": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_test.jsonl",
}
enc = tiktoken.get_encoding("gpt2")
def download(split):
"""Downloads HellaSwag DATA_CACHE_DIR"""
os.makedirs(DATA_CACHE_DIR, exist_ok=True)
data_url = hellaswags[split]
data_filename = os.path.join(DATA_CACHE_DIR, f"hellaswag_{split}.jsonl")
if not os.path.exists(data_filename):
print(f"Downloading {data_url} to {data_filename}...")
download_file(data_url, data_filename)
def render_example(example):
"""
Given the example as a dictionary, render it as three torch tensors:
- tokens (the tokens of context + completion, of size 4xN, as there are always 4 candidates)
- mask (is 1 in the region of the candidate completion, where we evaluate likelihoods)
- label (the index of the correct completion, which we hope has the highest likelihood)
"""
ctx = example["ctx"]
label = example["label"]
endings = example["endings"]
# data needed to reproduce this eval on the C size
data = {
"label": label,
"ctx_tokens": None,
"ending_tokens": [],
}
# gather up all the tokens
ctx_tokens = enc.encode(ctx)
data["ctx_tokens"] = ctx_tokens
tok_rows = []
mask_rows = []
for end in endings:
end_tokens = enc.encode(" " + end) # note: prepending " " because GPT-2 tokenizer
tok_rows.append(ctx_tokens + end_tokens)
mask_rows.append([0]*len(ctx_tokens) + [1]*len(end_tokens))
data["ending_tokens"].append(end_tokens)
# have to be careful during the collation because the number of tokens in each row can differ
max_len = max(len(row) for row in tok_rows)
tokens = torch.zeros((4, max_len), dtype=torch.long)
mask = torch.zeros((4, max_len), dtype=torch.long)
for i, (tok_row, mask_row) in enumerate(zip(tok_rows, mask_rows)):
tokens[i, :len(tok_row)] = torch.tensor(tok_row)
mask[i, :len(mask_row)] = torch.tensor(mask_row)
return data, tokens, mask, label
def iterate_examples(split):
# there are 10,042 examples in total in val
download(split)
with open(os.path.join(DATA_CACHE_DIR, f"hellaswag_{split}.jsonl"), "r") as f:
for line in f:
example = json.loads(line)
yield example
@torch.no_grad()
def evaluate(model_type, device):
torch.set_float32_matmul_precision('high') # use tf32
model = GPT2LMHeadModel.from_pretrained(model_type)
model.to(device)
# model = torch.compile(model) # optionally torch compile the model
num_correct_norm = 0
num_correct = 0
num_total = 0
for example in iterate_examples("val"):
data, tokens, mask, label = render_example(example)
tokens = tokens.to(device)
mask = mask.to(device)
# get the logits
logits = model(tokens).logits
# evaluate the autoregressive loss at all positions
shift_logits = (logits[..., :-1, :]).contiguous()
shift_tokens = (tokens[..., 1:]).contiguous()
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
flat_shift_tokens = shift_tokens.view(-1)
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
shift_losses = shift_losses.view(tokens.size(0), -1)
# now get the average loss just for the completion region (where mask == 1), in each row
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
masked_shift_losses = shift_losses * shift_mask
# sum and divide by the number of 1s in the mask
sum_loss = masked_shift_losses.sum(dim=1)
avg_loss = sum_loss / shift_mask.sum(dim=1)
# now we have a loss for each of the 4 completions
# the one with the lowest loss should be the most likely
pred = sum_loss.argmin().item()
pred_norm = avg_loss.argmin().item()
# accumulate stats
num_total += 1
num_correct += int(pred == label)
num_correct_norm += int(pred_norm == label)
print(f"{num_total} acc_norm: {num_correct_norm}/{num_total}={num_correct_norm/num_total:.4f}")
# debug: pretty print a few examples, and the losses in each case
if num_total < 10:
print("---")
print(f"Context:\n {example['ctx']}")
print(f"Endings:")
for i, end in enumerate(example["endings"]):
print(f"{i} (loss: {avg_loss[i].item():.4f}) {end}")
print(f"predicted: {pred_norm}, actual: {label}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model_type", type=str, default="gpt2", help="the model type to use")
parser.add_argument("-d", "--device", type=str, default="cuda", help="the device to use")
args = parser.parse_args()
evaluate(args.model_type, args.device)