-
Notifications
You must be signed in to change notification settings - Fork 110
/
tools.py
459 lines (374 loc) · 13.7 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import datetime
import io
import pathlib
import pickle
import re
import uuid
import gym
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import tensorflow_probability as tfp
from tensorflow.keras.mixed_precision import experimental as prec
from tensorflow_probability import distributions as tfd
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
def nest_summary(structure):
if isinstance(structure, dict):
return {k: nest_summary(v) for k, v in structure.items()}
if isinstance(structure, list):
return [nest_summary(v) for v in structure]
if hasattr(structure, 'shape'):
return str(structure.shape).replace(', ', 'x').strip('(), ')
return '?'
def graph_summary(writer, fn, *args):
step = tf.summary.experimental.get_step()
def inner(*args):
tf.summary.experimental.set_step(step)
with writer.as_default():
fn(*args)
return tf.numpy_function(inner, args, [])
def video_summary(name, video, step=None, fps=20):
name = name if isinstance(name, str) else name.decode('utf-8')
if np.issubdtype(video.dtype, np.floating):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf1.Summary()
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
image.encoded_image_string = encode_gif(frames, fps)
summary.value.add(tag=name + '/gif', image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print('GIF summaries require ffmpeg in $PATH.', e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name + '/grid', frames, step)
def encode_gif(frames, fps):
from subprocess import Popen, PIPE
h, w, c = frames[0].shape
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
cmd = ' '.join([
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
f'-r {fps:.02f} -f gif -'])
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
del proc
return out
def simulate(agent, envs, steps=0, episodes=0, state=None):
# Initialize or unpack simulation state.
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), np.bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
else:
step, episode, done, length, obs, agent_state = state
while (steps and step < steps) or (episodes and episode < episodes):
# Reset envs if necessary.
if done.any():
indices = [index for index, d in enumerate(done) if d]
promises = [envs[i].reset(blocking=False) for i in indices]
for index, promise in zip(indices, promises):
obs[index] = promise()
# Step agents.
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
action, agent_state = agent(obs, done, agent_state)
action = np.array(action)
assert len(action) == len(envs)
# Step envs.
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
obs, _, done = zip(*[p()[:3] for p in promises])
obs = list(obs)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += (done * length).sum()
length *= (1 - done)
# Return new state to allow resuming the simulation.
return (step - steps, episode - episodes, done, length, obs, agent_state)
def count_episodes(directory):
filenames = directory.glob('*.npz')
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
episodes, steps = len(lengths), sum(lengths)
return episodes, steps
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
for episode in episodes:
identifier = str(uuid.uuid4().hex)
length = len(episode['reward'])
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
def load_episodes(directory, rescan, length=None, balance=False, seed=0):
directory = pathlib.Path(directory).expanduser()
random = np.random.RandomState(seed)
cache = {}
while True:
for filename in directory.glob('*.npz'):
if filename not in cache:
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
except Exception as e:
print(f'Could not load episode: {e}')
continue
cache[filename] = episode
keys = list(cache.keys())
for index in random.choice(len(keys), rescan):
episode = cache[keys[index]]
if length:
total = len(next(iter(episode.values())))
available = total - length
if available < 1:
print(f'Skipped short episode of length {available}.')
continue
if balance:
index = min(random.randint(0, total), available)
else:
index = int(random.randint(0, available))
episode = {k: v[index: index + length] for k, v in episode.items()}
yield episode
class DummyEnv:
def __init__(self):
self._random = np.random.RandomState(seed=0)
self._step = None
@property
def observation_space(self):
low = np.zeros([64, 64, 3], dtype=np.uint8)
high = 255 * np.ones([64, 64, 3], dtype=np.uint8)
spaces = {'image': gym.spaces.Box(low, high)}
return gym.spaces.Dict(spaces)
@property
def action_space(self):
low = -np.ones([5], dtype=np.float32)
high = np.ones([5], dtype=np.float32)
return gym.spaces.Box(low, high)
def reset(self):
self._step = 0
obs = self.observation_space.sample()
return obs
def step(self, action):
obs = self.observation_space.sample()
reward = self._random.uniform(0, 1)
self._step += 1
done = self._step >= 1000
info = {}
return obs, reward, done, info
class SampleDist:
def __init__(self, dist, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def mean(self):
samples = self._dist.sample(self._samples)
return tf.reduce_mean(samples, 0)
def mode(self):
sample = self._dist.sample(self._samples)
logprob = self._dist.log_prob(sample)
return tf.gather(sample, tf.argmax(logprob))[0]
def entropy(self):
sample = self._dist.sample(self._samples)
logprob = self.log_prob(sample)
return -tf.reduce_mean(logprob, 0)
class OneHotDist:
def __init__(self, logits=None, probs=None):
self._dist = tfd.Categorical(logits=logits, probs=probs)
self._num_classes = self.mean().shape[-1]
self._dtype = prec.global_policy().compute_dtype
@property
def name(self):
return 'OneHotDist'
def __getattr__(self, name):
return getattr(self._dist, name)
def prob(self, events):
indices = tf.argmax(events, axis=-1)
return self._dist.prob(indices)
def log_prob(self, events):
indices = tf.argmax(events, axis=-1)
return self._dist.log_prob(indices)
def mean(self):
return self._dist.probs_parameter()
def mode(self):
return self._one_hot(self._dist.mode())
def sample(self, amount=None):
amount = [amount] if amount else []
indices = self._dist.sample(*amount)
sample = self._one_hot(indices)
probs = self._dist.probs_parameter()
sample += tf.cast(probs - tf.stop_gradient(probs), self._dtype)
return sample
def _one_hot(self, indices):
return tf.one_hot(indices, self._num_classes, dtype=self._dtype)
class TanhBijector(tfp.bijectors.Bijector):
def __init__(self, validate_args=False, name='tanh'):
super().__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
name=name)
def _forward(self, x):
return tf.nn.tanh(x)
def _inverse(self, y):
dtype = y.dtype
y = tf.cast(y, tf.float32)
y = tf.where(
tf.less_equal(tf.abs(y), 1.),
tf.clip_by_value(y, -0.99999997, 0.99999997), y)
y = tf.atanh(y)
y = tf.cast(y, dtype)
return y
def _forward_log_det_jacobian(self, x):
log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype))
return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * tf.ones_like(reward)
dims = list(range(reward.shape.ndims))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = tf.transpose(reward, dims)
value = tf.transpose(value, dims)
pcont = tf.transpose(pcont, dims)
if bootstrap is None:
bootstrap = tf.zeros_like(value[-1])
next_values = tf.concat([value[1:], bootstrap[None]], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan(
lambda agg, cur: cur[0] + cur[1] * lambda_ * agg,
(inputs, pcont), bootstrap, reverse=True)
if axis != 0:
returns = tf.transpose(returns, dims)
return returns
class Adam(tf.Module):
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
self._name = name
self._modules = modules
self._clip = clip
self._wd = wd
self._wdpattern = wdpattern
self._opt = tf.optimizers.Adam(lr)
self._opt = prec.LossScaleOptimizer(self._opt, 'dynamic')
self._variables = None
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss):
if self._variables is None:
variables = [module.variables for module in self._modules]
self._variables = tf.nest.flatten(variables)
count = sum(np.prod(x.shape) for x in self._variables)
print(f'Found {count} {self._name} parameters.')
assert len(loss.shape) == 0, loss.shape
with tape:
loss = self._opt.get_scaled_loss(loss)
grads = tape.gradient(loss, self._variables)
grads = self._opt.get_unscaled_gradients(grads)
norm = tf.linalg.global_norm(grads)
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
if self._wd:
context = tf.distribute.get_replica_context()
context.merge_call(self._apply_weight_decay)
self._opt.apply_gradients(zip(grads, self._variables))
return norm
def _apply_weight_decay(self, strategy):
print('Applied weight decay to variables:')
for var in self._variables:
if re.search(self._wdpattern, self._name + '/' + var.name):
print('- ' + self._name + '/' + var.name)
strategy.extended.update(var, lambda var: self._wd * var)
def args_type(default):
if isinstance(default, bool):
return lambda x: bool(['False', 'True'].index(x))
if isinstance(default, int):
return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
if isinstance(default, pathlib.Path):
return lambda x: pathlib.Path(x).expanduser()
return type(default)
def static_scan(fn, inputs, start, reverse=False):
last = start
outputs = [[] for _ in tf.nest.flatten(start)]
indices = range(len(tf.nest.flatten(inputs)[0]))
if reverse:
indices = reversed(indices)
for index in indices:
inp = tf.nest.map_structure(lambda x: x[index], inputs)
last = fn(last, inp)
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
if reverse:
outputs = [list(reversed(x)) for x in outputs]
outputs = [tf.stack(x, 0) for x in outputs]
return tf.nest.pack_sequence_as(start, outputs)
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
return tf.random.normal(
tuple(sample_shape) + tuple(self.event_shape),
self.mean(), self.stddev(), self.dtype, seed, name)
tfd.MultivariateNormalDiag.sample = _mnd_sample
def _cat_sample(self, sample_shape=(), seed=None, name='sample'):
assert len(sample_shape) in (0, 1), sample_shape
assert len(self.logits_parameter().shape) == 2
indices = tf.random.categorical(
self.logits_parameter(), sample_shape[0] if sample_shape else 1,
self.dtype, seed, name)
if not sample_shape:
indices = indices[..., 0]
return indices
tfd.Categorical.sample = _cat_sample
class Every:
def __init__(self, every):
self._every = every
self._last = None
def __call__(self, step):
if self._last is None:
self._last = step
return True
if step >= self._last + self._every:
self._last += self._every
return True
return False
class Once:
def __init__(self):
self._once = True
def __call__(self):
if self._once:
self._once = False
return True
return False