-
Notifications
You must be signed in to change notification settings - Fork 0
/
upload_database.py
173 lines (142 loc) · 5.74 KB
/
upload_database.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# -*- coding: utf-8 -*-
"""Upload database.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1XzqRYRXvlkX3g2O-vOhriawgCbtrzOOZ
"""
!nvidia-smi
# Commented out IPython magic to ensure Python compatibility.
# %%bash
# git clone -q https://github.com/NVIDIA/apex
# cd apex
# pip install -q -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
#@title Upload database
import os
from PIL import Image
import torch.utils.data as data
import torchvision.transforms as transforms
import cv2
import numpy as np
import torch
class CamObjDataset(data.Dataset):
def __init__(self, image_root, gt_root, trainsize):
self.trainsize = trainsize
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.jpg')
or f.endswith('.png')]
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.filter_files()
self.size = len(self.images)
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
image = self.img_transform(image)
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
class test_dataset:
"""load test dataset (batchsize=1)"""
def __init__(self, image_root, gt_root, testsize):
self.testsize = testsize
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.png')]
self.gts = [gt_root + f for f in os.listdir(gt_root) if f.endswith('.jpg') or f.endswith('.png')]
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.transform = transforms.Compose([
transforms.Resize((self.testsize, self.testsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
self.gt_transform = transforms.ToTensor()
self.size = len(self.images)
self.index = 0
def load_data(self):
image = self.rgb_loader(self.images[self.index])
image = self.transform(image).unsqueeze(0)
gt = self.binary_loader(self.gts[self.index])
name = self.images[self.index].split('/')[-1]
if name.endswith('.png'):
name = name.split('.png')[0] + '.png'
self.index += 1
return image, gt, name
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
class test_loader_faster(data.Dataset):
def __init__(self, image_root, testsize):
self.testsize = testsize
self.images = [image_root + f for f in os.listdir(image_root) if f.endswith('.jpg')]
self.images = sorted(self.images)
self.transform = transforms.Compose([
transforms.Resize((self.testsize, self.testsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
self.size = len(self.images)
def __getitem__(self, index):
images = self.rgb_loader(self.images[index])
images = self.transform(images)
img_name_list = self.images[index]
return images, img_name_list
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
def __len__(self):
return self.size
def get_loader(image_root, gt_root, batchsize, trainsize, shuffle=True, num_workers=0, pin_memory=True):
# `num_workers=0` for more stable training
dataset = CamObjDataset(image_root, gt_root, trainsize)
data_loader = data.DataLoader(dataset=dataset,
batch_size=batchsize,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=pin_memory)
return data_loader