EnergySignature = Input Data
DaRe_Energy_Main = Script for data preparation.
Input -> Input Data from Energy Signature
Output -> .csv file containing elaborated data
'EnergyClean/Energy_%s_%s_%i.csv' % (str(split), outliers_rmv, year)
split = True || False
outliers_rmv = 'ZS' || 'IQR' || 'NO'
year = 2017 || 2018
DaRe_Energy_Random_Forest = Script for random forest model creation.
Input -> .csv file containing elaborated data
Output -> 1. 'Random_Forest_model.sav' containing the Random Forest model
2. 'test_data.csv' containing the data used to test the model
DaRe_Energy_Predictor = Autonomous script for data prediction.
Input -> 1. Random Forest Model File
2. Input Data to predict
3. Output file
usage: DaRe_Energy_Predictor.py <modelFile> <inFile> <outFile>
for more instructions: DaRe_Energy_Predictor.py -h || --help
Output -> <outFile> containing the input data with added column for predicted values