-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpytorch_model.py
220 lines (170 loc) Β· 8.01 KB
/
pytorch_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# Copyright 2020 Arkadip Bhattacharya
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import Progbar
class Model(nn.Module):
def __init__(self,input_size = 3, lstm_input_size = 51, lstm_hidden_size = 102, time_series = 6, lstm_num_layers = 1, cuda=False):
super(Model, self).__init__()
lstm_drop = 0.2 if lstm_num_layers > 1 else 0
self.input_size = input_size
self.lstm_input_size = lstm_input_size
self.hidden_size = lstm_hidden_size
self.time_series = time_series
self.lstm_num_layers = lstm_num_layers
self.cuda = cuda
# Model Architucture Starts
self.conv1 = nn.Conv1d(time_series, 18, 1)
self.pool1 = nn.MaxPool1d(1)
self.drop1 = nn.Dropout(p=0.2)
self.fc2 = nn.Linear(18 * input_size, lstm_input_size)
self.drop2 = nn.Dropout(p=0.2)
self.lstm3 = nn.LSTM(input_size=lstm_input_size,
hidden_size=lstm_hidden_size,
num_layers=lstm_num_layers,
batch_first= True,
dropout = lstm_drop)
self.drop3 = nn.Dropout(p=0.2)
self.fc4 = nn.Linear(lstm_hidden_size, lstm_input_size)
self.drop4 = nn.Dropout(p=0.2)
self.fc5 = nn.Linear(lstm_input_size, time_series)
def init_hidden(self, batch_size):
device = torch.device('cuda') if self.cuda else torch.device('cpu')
return (torch.zeros(self.lstm_num_layers, batch_size, self.hidden_size, device = device),
torch.zeros(self.lstm_num_layers, batch_size, self.hidden_size, device = device))
def forward(self, x):
self.hidden = self.init_hidden(x.shape[0])
x = self.pool1(F.relu(self.conv1(x)))
x = self.drop1(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc2(x))
x = self.drop2(x)
x = x.unsqueeze(1)
x, self.hidden = self.lstm3(x, self.hidden)
x = self.drop3(x)
x = self.drop4(F.relu(self.fc4(x)))
x = self.fc5(x)
return x
def fit(self, trainloader, validationloader, criterion, optimizer, epochs, val_per_batch):
trainlosses = []
testlosses = []
self.criterion = criterion
self.optimizer = optimizer
for epoch in range(epochs):
progbar = Progbar(target=len(trainloader) - 1)
for batch, (data, target) in enumerate(trainloader):
trainloss = 0
testloss = 0
self.train()
data = data.type(torch.FloatTensor)
target = target.type(torch.FloatTensor)
if self.cuda:
data, target = data.cuda(), target.cuda()
self.optimizer.zero_grad()
output = self.forward(data)
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
trainloss = loss.item()
self.eval()
with torch.no_grad():
for data, target in validationloader:
data = data.type(torch.FloatTensor)
target = target.type(torch.FloatTensor)
if self.cuda:
data, target = data.cuda(), target.cuda()
ps = self.forward(data)
testloss += self.criterion(ps, target).item()
testloss = testloss / len(validationloader)
trainloss = trainloss / len(trainloader)
trainlosses.append(trainloss)
testlosses.append(testloss)
progbar.update(current=batch, values=[('Epoch', epoch+1), ('Training Loss', trainloss), ('Test Loss', testloss)])
self.trainlosses = trainlosses
self.testlosses = testlosses
return (trainlosses, testlosses)
def test(self, testloader):
result = []
expected = []
self.eval()
with torch.no_grad():
for data, label in testloader:
data = data.type(torch.FloatTensor)
if self.cuda:
data, label = data.cuda(), label.cuda()
for res in self.forward(data).cpu().numpy().flatten():
result.append(res.item())
for expt in label.cpu().numpy().flatten():
expected.append(expt.item())
self.result = result
self.expected = expected
return (result, expected)
def save_dict(self, path, save_optim=False):
try:
os.mkdir(os.path.join('model', path))
print(path, " - dir Created")
except FileExistsError:
print(path, " - dir Already exists")
finally:
torch.save(self.state_dict(), os.path.join('model', path, 'model.pt'))
print('Model saved in', path)
if save_optim:
torch.save(self.optimizer.state_dict(), os.path.join('model', path, 'optim.pt'))
print('Optimizer saved in', path)
return
def save_summary(self, path):
try:
os.mkdir(os.path.join('model', path))
print(path, " - dir Created")
except FileExistsError:
print(path, " - dir Already exists")
finally:
try:
with open(os.path.join('model', path, 'summary.txt'), 'w+') as f:
f.write('Model Architecture:\n')
f.write(str(self) + '\n\n')
f.write("Loss: " + str(self.criterion) + "\n")
f.write("Optimizer:\n" + str(self.optimizer) + "\n\n")
f.write("Hypterparameters:\n")
f.write("input_size: " + str(self.input_size) + "\n")
f.write("lstm_input_size: " + str(self.lstm_input_size) + "\n")
f.write("hidden_size: " + str(self.hidden_size) + "\n")
f.write("time_series: " + str(self.time_series) + "\n")
f.write("lstm_num_layers: " + str(self.lstm_num_layers) + "\n")
f.write("cuda: " + str(self.cuda))
except:
print("Saving Failed")
else:
print("Summary Saved!")
def errors(self, testloader):
self.eval()
mae = torch.Tensor([0])
rmse = torch.Tensor([0])
mape = torch.Tensor([0])
for f, l in testloader:
f = f.type(torch.FloatTensor)
l = l.type(torch.FloatTensor)
if self.cuda:
f, l = f.cuda(), l.cuda()
mae += F.l1_loss(self.forward(f), l)
rmse += F.mse_loss(self.forward(f), l)
mape += torch.mean(torch.abs((l - self.forward(f)) / l))
# Mean in values
mae /= len(testloader)
rmse /= len(testloader)
mape /= len(testloader)
# square rooting the end result
rmse = torch.sqrt(rmse)
print(f"MAE: {round(mae.item(), 4)}")
print(f"RMSE: {round(rmse.item(), 4)}")
print(f"MAPE: {round(mape.item() * 100, 4)} %")