This repository has been archived by the owner on May 27, 2022. It is now read-only.
forked from vova616/chipmunk
-
Notifications
You must be signed in to change notification settings - Fork 5
/
misc.go
111 lines (82 loc) · 2.91 KB
/
misc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
package chipmunk
import (
"log"
"github.com/dataarts/chipmunk/vect"
)
func k_scalar_body(body *Body, r, n vect.Vect) vect.Float {
rcn := vect.Cross(r, n)
return body.m_inv + (body.i_inv * rcn * rcn)
}
func k_scalar(a, b *Body, r1, r2, n vect.Vect) vect.Float {
value := k_scalar_body(a, r1, n) + k_scalar_body(b, r2, n)
if value == 0.0 {
log.Printf("Warning: Unsolvable collision or constraint.")
}
return value
}
func k_scalar2(a, b *Body, r1, r2, n vect.Vect) vect.Float {
rcn := (r1.X * n.Y) - (r1.Y * n.X)
rcn = a.m_inv + (a.i_inv * rcn * rcn)
rcn2 := (r2.X * n.Y) - (r2.Y * n.X)
rcn2 = b.m_inv + (b.i_inv * rcn2 * rcn2)
value := rcn + rcn2
if value == 0.0 {
log.Printf("Warning: Unsolvable collision or constraint.")
}
return value
}
func relative_velocity2(a, b *Body, r1, r2 vect.Vect) vect.Vect {
v1 := vect.Add(b.v, vect.Mult(vect.Perp(r2), b.w))
v2 := vect.Add(a.v, vect.Mult(vect.Perp(r1), a.w))
return vect.Sub(v1, v2)
}
func relative_velocity(a, b *Body, r1, r2 vect.Vect) vect.Vect {
return vect.Vect{(-r2.Y*b.w + b.v.X) - (-r1.Y*a.w + a.v.X), (r2.X*b.w + b.v.Y) - (r1.X*a.w + a.v.Y)}
}
func normal_relative_velocity(a, b *Body, r1, r2, n vect.Vect) vect.Float {
return vect.Dot(relative_velocity(a, b, r1, r2), n)
}
func apply_impulses(a, b *Body, r1, r2, j vect.Vect) {
j1 := vect.Vect{-j.X, -j.Y}
a.v.Add(vect.Mult(j1, a.m_inv))
a.w += a.i_inv * vect.Cross(r1, j1)
b.v.Add(vect.Mult(j, b.m_inv))
b.w += b.i_inv * vect.Cross(r2, j)
}
func apply_bias_impulses(a, b *Body, r1, r2, j vect.Vect) {
j1 := vect.Vect{-j.X, -j.Y}
a.v_bias.Add(vect.Mult(j1, a.m_inv))
a.w_bias += a.i_inv * vect.Cross(r1, j1)
b.v_bias.Add(vect.Mult(j, b.m_inv))
b.w_bias += b.i_inv * vect.Cross(r2, j)
}
/*
func apply_impulses(a, b *Body, r1, r2, j vect.Vect) {
a.v = vect.Vect{(-j.X*a.m_inv)+a.v.X, (-j.Y*a.m_inv)+a.v.Y}
a.w += a.i_inv * ((r1.X*-j.Y) - (r1.Y*-j.X))
b.v = vect.Vect{(j.X*b.m_inv)+b.v.X, (j.Y*b.m_inv)+b.v.Y}
b.w += b.i_inv * ((r2.X*j.Y) - (r2.Y*j.X))
}
func apply_bias_impulses(a, b *Body, r1, r2, j vect.Vect) {
a.v_bias = vect.Vect{(-j.X*a.m_inv)+a.v_bias.X, (-j.Y*a.m_inv)+a.v_bias.Y}
a.w_bias += a.i_inv * ((r1.X*-j.Y) - (r1.Y*-j.X))
b.v_bias = vect.Vect{(j.X*b.m_inv)+b.v_bias.X, (j.Y*b.m_inv)+b.v_bias.Y}
b.w_bias += b.i_inv * ((r2.X*j.Y) - (r2.Y*j.X))
}
<<<<<<< HEAD
=======
/*
func apply_impulses(a, b *Body, r1, r2, j vect.Vect) {
a.v = vect.Vect{(-j.X*a.m_inv)+a.v.X, (-j.Y*a.m_inv)+a.v.Y}
a.w += a.i_inv * ((r1.X*-j.Y) - (r1.Y*-j.X))
b.v = vect.Vect{(j.X*b.m_inv)+b.v.X, (j.Y*b.m_inv)+b.v.Y}
b.w += b.i_inv * ((r2.X*j.Y) - (r2.Y*j.X))
}
func apply_bias_impulses(a, b *Body, r1, r2, j vect.Vect) {
a.v_bias = vect.Vect{(-j.X*a.m_inv)+a.v_bias.X, (-j.Y*a.m_inv)+a.v_bias.Y}
a.w_bias += a.i_inv * ((r1.X*-j.Y) - (r1.Y*-j.X))
b.v_bias = vect.Vect{(j.X*b.m_inv)+b.v_bias.X, (j.Y*b.m_inv)+b.v_bias.Y}
b.w_bias += b.i_inv * ((r2.X*j.Y) - (r2.Y*j.X))
}
>>>>>>> Performance improvement
*/