Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

world_bank_datasets #1075

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions scripts/world_bank/datasets/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# World Bank Datasets

- source: https://data.worldbank.org

- how to download data: Auto download of data by using python script(datasets.py).

- type of place: Country.

- statvars: All Type

- years: 1960 to 2050

-copyright year: 2024

### How to run:
"""Processes WB datasets.

update september 2024:
To run all processing methods , please do not pass the mode
Run: python3 datasets.py

Or If required to check issue in any individual process follow all the steps as below:

Supports the following tasks:

============================

fetch_datasets: Fetches WB dataset lists and resources and writes them to 'output/wb-datasets.csv'

Run: python3 datasets.py --mode=fetch_datasets

============================

download_datasets: Downloads datasets listed in 'output/wb-datasets.csv' to the 'output/downloads' folder.

Run: python3 datasets.py --mode=download_datasets

============================

write_wb_codes: Extracts World Bank indicator codes (and related information) from files downloaded in the 'output/downloads' folder to 'output/wb-codes.csv'.

It only operates on files that are named '*_CSV.zip'.

Run: python3 datasets.py --mode=write_wb_codes

============================

load_stat_vars: Loads stat vars from a mapping file specified via the `stat_vars_file` flag.

Use this for debugging to ensure that the mappings load correctly and fix any errors logged by this operation.

Run: python3 datasets.py --mode=load_stat_vars --stat_vars_file=/path/to/statvars.csv

See `sample-svs.csv` for a sample mappings file.

============================

write_observations: Extracts observations from files downloaded in the 'output/downloads' folder and saves them to CSVs in the 'output/observations' folder.

The stat vars file to be used for mappings should be specified using the `stat_vars_file' flag.

It only operates on files that are named '*_CSV.zip'.

Run: python3 datasets.py --mode=write_observations --stat_vars_file=/path/to/statvars.csv
"""

74 changes: 48 additions & 26 deletions scripts/world_bank/datasets/datasets.py

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  1. Please add Readme.md file
  2. Update copyright year to 2024

Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,12 @@
# limitations under the License.
"""Processes WB datasets.

update september 2024:
To run all processing methods , please do not pass the mode
Run: python3 datasets.py

Or If required to check issue in any individual process follow all the steps as below:

Supports the following tasks:

============================
Expand Down Expand Up @@ -41,7 +47,7 @@

Use this for debugging to ensure that the mappings load correctly and fix any errors logged by this operation.

Run: python3 datasets.py --mode=load_stat_vars --stat_vars_file=/path/to/sv_mappings.csv
Run: python3 datasets.py --mode=load_stat_vars --stat_vars_file=/path/to/statvars.csv

See `sample-svs.csv` for a sample mappings file.

Expand All @@ -53,7 +59,7 @@

It only operates on files that are named '*_CSV.zip'.

Run: python3 datasets.py --mode=write_observations --stat_vars_file=/path/to/sv_mappings.csv
Run: python3 datasets.py --mode=write_observations --stat_vars_file=/path/to/statvars.csv
"""

import requests
Expand All @@ -66,6 +72,7 @@
import re
import urllib3
from urllib3.util.ssl_ import create_urllib3_context
from urllib3.exceptions import HTTPError
from absl import flags
import zipfile
import codecs
Expand All @@ -84,7 +91,7 @@ class Mode:


flags.DEFINE_string(
'mode', Mode.WRITE_OBSERVATIONS,
'mode', None,
f"Specify one of the following modes: {Mode.FETCH_DATASETS}, {Mode.DOWNLOAD_DATASETS}, {Mode.WRITE_WB_CODES}, {Mode.LOAD_STAT_VARS}, {Mode.WRITE_OBSERVATIONS}"
)

Expand Down Expand Up @@ -131,7 +138,7 @@ class Mode:

def download_datasets():
'''Downloads dataset files. This is a very expensive operation so run it with care. It assumes that the datasets CSV is already available.'''

logging.info('start download_datasets')
with open(DATASETS_CSV_FILE_PATH, 'r') as f:
csv_rows = list(csv.DictReader(f))
download_urls = []
Expand All @@ -158,10 +165,13 @@ def download(url):
# response = requests.get(url)
# Using urllib3 for downloading content to avoid SSL issue.
# See: https://github.com/urllib3/urllib3/issues/2653#issuecomment-1165418616
with urllib3.PoolManager(ssl_context=ctx) as http:
response = http.request("GET", url)
with open(file_path, 'wb') as f:
f.write(response.data)
with urllib3.PoolManager(ssl_context=ctx,timeout=90) as http:
try:
response = http.request("GET", url)
with open(file_path, 'wb') as f:
f.write(response.data)
except HTTPError as e:
print(f"HTTP error encountered: {e}")
except Exception as e:
logging.error("Error downloading %s", url, exc_info=e)

Expand Down Expand Up @@ -277,11 +287,15 @@ def load_json(url, params, response_file):
return json.load(f)

logging.info("Fetching url %s, params %s", url, params)
response = requests.get(url, params=params).json()
with open(response_file, 'w') as f:
logging.info('Writing response to file %s', response_file)
json.dump(response, f, indent=2)
return response
try:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If the download fails for existing data, better to abort the processing as autorefresh with partial data will result in deletions in prod.

response = requests.get(url, params=params).json()
with open(response_file, 'w') as f:
logging.info('Writing response to file %s', response_file)
json.dump(response, f, indent=2)
return response
except Exception as e:
print(f"Http error {e}")
return None


def load_json_file(json_file):
Expand Down Expand Up @@ -571,19 +585,27 @@ def get_data_and_series_file_names(zip):


def main(_):
match FLAGS.mode:
case Mode.FETCH_DATASETS:
download_datasets()
case Mode.DOWNLOAD_DATASETS:
fetch_and_write_datasets_csv()
case Mode.WRITE_WB_CODES:
write_wb_codes()
case Mode.LOAD_STAT_VARS:
load_stat_vars(FLAGS.stat_vars_file)
case Mode.WRITE_OBSERVATIONS:
write_all_observations(FLAGS.stat_vars_file)
case _:
logging.error('No mode specified.')
logging.info(FLAGS.mode)
if not FLAGS.mode:
fetch_and_write_datasets_csv()
download_datasets()
write_wb_codes()
load_stat_vars(FLAGS.stat_vars_file)
write_all_observations(FLAGS.stat_vars_file)
else:
match FLAGS.mode:
case Mode.FETCH_DATASETS:
download_datasets()
case Mode.DOWNLOAD_DATASETS:
fetch_and_write_datasets_csv()
case Mode.WRITE_WB_CODES:
write_wb_codes()
case Mode.LOAD_STAT_VARS:
load_stat_vars(FLAGS.stat_vars_file)
case Mode.WRITE_OBSERVATIONS:
write_all_observations(FLAGS.stat_vars_file)
case _:
logging.error('No mode specified.')


if __name__ == '__main__':
Expand Down
94 changes: 94 additions & 0 deletions scripts/world_bank/datasets/manifest.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
{
"import_specifications": [
{
"import_name": "WorldBankDatasets",
"curator_emails": ["swethakumari@google.com"],
"provenance_url": "https://data.worldbank.org",
"provenance_description": "World Bank databases are essential tools for supporting critical management decisions and providing key statistical information for Bank operational activities.",
"scripts": ["datasets.py"],
"import_inputs": [
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/ASPIRE_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/EdStats_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/FINDEX_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/GFDD_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/GPFI_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/HCI_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/IDA_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/Jobs_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/MDG_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/PovStats_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/SDG_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/SE4ALL_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/Subnational-Population_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/Subnational-Poverty_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/WGI_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/BBSC_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/DB_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/Economic_Fitness_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/HEFPI_CSV_obs.csv"
},
{
"template_mcf": "wb.tmcf",
"cleaned_csv": "output/observations/WWBI_CSV_obs.csv"
}
],
"cron_schedule": "5 3 15 * *"
}
]
}
Loading