layout | title | nav_order | parent | grand_parent |
---|---|---|---|---|
default |
Time Series as pd.Series |
1 |
Pandas |
API |
Returns a pandas.Series
representing a time series for the place
and
stat_var
satisfying any optional parameters.
See the full list of StatisticalVariable
classes.
Signature:
datacommons_pandas.build_time_series(place, stat_var, measurement_method=None,observation_period=None, unit=None, scaling_factor=None)
Required arguments:
place
: Thedcid
of thePlace
to query for.stat_var
: Thedcid
of theStatisticalVariable
. See the full list ofStatisticalVariable
variables.
NOTE: In Data Commons, dcid
stands for Data Commons ID and indicates the unique identifier assigned to every node in the knowledge graph.
Going into more detail on how to assemble the values for the required arguments:
place
: For this parameter, you will need to specify the DCID (the unique ID assigned by Data Commons to each node in the graph) of the place you are interested in.stat_var
: The statistical variable whose value you are interested in.
In addition to these required properties, this endpoint also allows for other, optional arguments. Here are helpful arguments in regular use by Data Commons developers:
-
measurement_method
: The technique used for measuring a statistical variable. -
observation_period
: The time period over which an observation is made. -
unit
: The unit of measurement. -
scaling_factor
: Property of statistical variables indicating factor by which a measurement is multiplied to fit a certain format.
Note that specifying arguments that do not exist for the target place and variable will result in an empty response. For more information on any of these arguments, check out the glossary.
>>> datacommons_pandas.build_time_series("geoId/05", "Count_Person_Male")
2017 1461651
2018 1468412
2011 1421287
2012 1431252
2013 1439862
2014 1447235
2015 1451913
2016 1456694
dtype: int64
Example 2: Retrieve the number of people in Bosnia and Herzegovina as counted by the Bosnian census.
>>> datacommons_pandas.build_time_series("country/BIH", "Count_Person", measurement_method="BosniaCensus")
2013 3791622
dtype: int64
>>> datacommons_pandas.build_time_series("geoId/12086", "Count_Death", observation_period="P1Y")
2001 19049
2004 18384
2008 18012
2011 17997
2000 18540
2003 18399
2006 18261
2013 18473
1999 19170
2002 18176
2009 17806
2014 19013
2015 19542
2016 20277
2005 18400
2007 17982
2010 18048
2012 18621
2017 20703
dtype: int64
>>> datacommons_pandas.build_time_series("geoId/12086", "RetailDrugDistribution_DrugDistribution_Naloxone", unit="Grams")
2006-10 55.21
2007-01 59.63
2007-04 65.98
2007-07 80.34
2007-10 118.79
2006-01 44.43
2006-04 48.28
2006-07 54.98
dtype: float64
Example 5: Retrieve the percentage of nominal GDP spent by the government of the Gambia on education.
>>> datacommons_pandas.build_time_series("country/GMB", "Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal", scaling_factor="100.0000000000")
1986 3.48473
2008 3.52738
2012 4.10118
1991 3.78061
1996 2.56628
1999 1.56513
2002 1.44292
2003 1.36338
2014 2.17849
2006 1.20949
2013 1.82979
1989 2.97409
1990 2.82584
2001 1.15810
2004 1.03450
2007 1.30849
1985 4.29515
1992 1.16984
1995 2.55356
2015 2.13528
2000 1.46587
2005 1.13919
2009 3.07235
2010 4.15610
2011 3.92511
2016 2.05946
2018 2.43275
dtype: float64
If there is no value associated with the requested property, an empty Series
object is returned:
>>> datacommons_pandas.build_time_series("geoId/000", "Count_Person_Male")
Series([], dtype: float64)
If you do not pass a required positional argument, a TypeError is returned:
>>> datacommons_pandas.build_time_series("geoId/000")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: build_time_series() missing 1 required positional argument: 'stat_var'