Skip to content

Latest commit

 

History

History
166 lines (132 loc) · 5 KB

time_series.md

File metadata and controls

166 lines (132 loc) · 5 KB
layout title nav_order parent grand_parent
default
Time Series as pd.Series
1
Pandas
API

Retrieve time series for a place

Returns a pandas.Series representing a time series for the place and stat_var satisfying any optional parameters.

See the full list of StatisticalVariable classes.

General information about this method

Signature:

datacommons_pandas.build_time_series(place, stat_var, measurement_method=None,observation_period=None, unit=None, scaling_factor=None)

Required arguments:

NOTE: In Data Commons, dcid stands for Data Commons ID and indicates the unique identifier assigned to every node in the knowledge graph.

Assembling the information you will need for a call to the build_time_series method

Going into more detail on how to assemble the values for the required arguments:

  • place: For this parameter, you will need to specify the DCID (the unique ID assigned by Data Commons to each node in the graph) of the place you are interested in.
  • stat_var: The statistical variable whose value you are interested in.

In addition to these required properties, this endpoint also allows for other, optional arguments. Here are helpful arguments in regular use by Data Commons developers:

  • measurement_method: The technique used for measuring a statistical variable.

  • observation_period: The time period over which an observation is made.

  • unit: The unit of measurement.

  • scaling_factor: Property of statistical variables indicating factor by which a measurement is multiplied to fit a certain format.

Note that specifying arguments that do not exist for the target place and variable will result in an empty response. For more information on any of these arguments, check out the glossary.

Examples

Example 1: Retrieve the count of men in the state of California.

>>> datacommons_pandas.build_time_series("geoId/05", "Count_Person_Male")
2017    1461651
2018    1468412
2011    1421287
2012    1431252
2013    1439862
2014    1447235
2015    1451913
2016    1456694
dtype: int64

Example 2: Retrieve the number of people in Bosnia and Herzegovina as counted by the Bosnian census.

>>> datacommons_pandas.build_time_series("country/BIH", "Count_Person", measurement_method="BosniaCensus")
2013    3791622
dtype: int64

Example 3: Retrieve the death count in Miami-Dade County over a period of one year.

>>> datacommons_pandas.build_time_series("geoId/12086", "Count_Death", observation_period="P1Y")
2001    19049
2004    18384
2008    18012
2011    17997
2000    18540
2003    18399
2006    18261
2013    18473
1999    19170
2002    18176
2009    17806
2014    19013
2015    19542
2016    20277
2005    18400
2007    17982
2010    18048
2012    18621
2017    20703
dtype: int64

Example 4: Retrieve the distrubtion of naloxone in Miami-Dade County in grams.

>>> datacommons_pandas.build_time_series("geoId/12086", "RetailDrugDistribution_DrugDistribution_Naloxone", unit="Grams")
2006-10     55.21
2007-01     59.63
2007-04     65.98
2007-07     80.34
2007-10    118.79
2006-01     44.43
2006-04     48.28
2006-07     54.98
dtype: float64

Example 5: Retrieve the percentage of nominal GDP spent by the government of the Gambia on education.

>>> datacommons_pandas.build_time_series("country/GMB", "Amount_EconomicActivity_ExpenditureActivity_EducationExpenditure_Government_AsFractionOf_Amount_EconomicActivity_GrossDomesticProduction_Nominal", scaling_factor="100.0000000000")
1986    3.48473
2008    3.52738
2012    4.10118
1991    3.78061
1996    2.56628
1999    1.56513
2002    1.44292
2003    1.36338
2014    2.17849
2006    1.20949
2013    1.82979
1989    2.97409
1990    2.82584
2001    1.15810
2004    1.03450
2007    1.30849
1985    4.29515
1992    1.16984
1995    2.55356
2015    2.13528
2000    1.46587
2005    1.13919
2009    3.07235
2010    4.15610
2011    3.92511
2016    2.05946
2018    2.43275
dtype: float64

Error Returns

If there is no value associated with the requested property, an empty Series object is returned:

>>> datacommons_pandas.build_time_series("geoId/000", "Count_Person_Male")
Series([], dtype: float64)

If you do not pass a required positional argument, a TypeError is returned:

>>> datacommons_pandas.build_time_series("geoId/000")
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: build_time_series() missing 1 required positional argument: 'stat_var'