-
Notifications
You must be signed in to change notification settings - Fork 68
PVCs for Pipelines SDK
We will show how you can use DLF to provision Persistent Volume Claims via DLF so you can use it within Pipelines SDK.
You have kubeflow installed and you can deploy pipelines using the Pipeline SDK.
Make sure you first follow the guide for Installation
We will just how you can adopt the examples located in contrib/volume_ops
NOTE: For this guide you can use both an empty and pre-populated with data bucket.
First you need to create a Dataset to point to the bucket you want to use. Create a file that looks like this:
apiVersion: com.ie.ibm.hpsys/v1alpha1
kind: Dataset
metadata:
name: your-dataset
spec:
local:
type: "COS"
accessKeyID: "access_key_id"
secretAccessKey: "secret_access_key"
endpoint: "https://YOUR_ENDPOINT"
bucket: "YOUR_BUCKET"
region: "" #it can be empty
Now just execute:
kubectl create -f my-dataset.yaml -n {my-namespace}
Now within {my-namespace}
you will find a PVC which you can use within your pipelines SDK without a problem.
You can see the example below which can use the PVC which was created out of your dataset.
import kfp
import kfp.dsl as dsl
from kfp.dsl import PipelineVolume
@dsl.pipeline(
name="Volume Op DAG",
description="The second example of the design doc."
)
def volume_op_dag():
dataset = PipelineVolume("your-dataset")
step1 = dsl.ContainerOp(
name="step1",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo 1|tee /data/file1"],
pvolumes={"/data": dataset}
)
step2 = dsl.ContainerOp(
name="step2",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["cp /data/file1 /data/file2"],
pvolumes={"/data": step1.pvolume}
)
step3 = dsl.ContainerOp(
name="step3",
image="library/bash:4.4.23",
command=["cat", "/mnt/file1", "/mnt/file2"],
pvolumes={"/mnt": step2.pvolume}
)
if __name__ == "__main__":
import kfp.compiler as compiler
compiler.Compiler().compile(volume_op_dag, __file__ + ".tar.gz")
If instead you want to create a Dataset as part of your pipeline, you can create the Dataset yaml and invoke a ResourceOp
.
Before that you need to make sure that the service account pipeline-runner
in namespace kubeflow
can create/delete Datasets, so make sure you execute kubectl apply -f examples/kubeflow/pipeline-runner-binding.yaml
before running the pipeline. The example rolebinding definition is in examples/kubeflow/pipeline-runner-binding.yaml
In the following pipeline we are creating the Dataset in step0 and then proceed to step1 to use it:
import kfp.dsl as dsl
import yaml
from kfp.dsl import PipelineVolume
# Make sure that you have applied ./pipeline-runner-binding.yaml
# or any serviceAccount that should be allowed to create/delete datasets
@dsl.pipeline(
name="Volume Op DAG",
description="The second example of the design doc."
)
def volume_op_dag():
datasetName = "your-dataset"
dataset = PipelineVolume(datasetName)
step0 = dsl.ResourceOp(name="dataset-creation",k8s_resource=get_dataset_yaml(
datasetName,
"XXXXXXXXXXXXXXX",
"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"http://your_endpoint.com",
"bucket-name",
""
))
step1 = dsl.ContainerOp(
name="step1",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["echo 1|tee /data/file1"],
pvolumes={"/data": dataset}
).after(step0)
step2 = dsl.ContainerOp(
name="step2",
image="library/bash:4.4.23",
command=["sh", "-c"],
arguments=["cp /data/file1 /data/file2"],
pvolumes={"/data": step1.pvolume}
)
step3 = dsl.ContainerOp(
name="step3",
image="library/bash:4.4.23",
command=["cat", "/mnt/file1", "/mnt/file2"],
pvolumes={"/mnt": step2.pvolume}
)
def get_dataset_yaml(name,accessKey,secretAccessKey,endpoint,bucket,region):
print(region)
dataset_spec = f"""
apiVersion: com.ie.ibm.hpsys/v1alpha1
kind: Dataset
metadata:
name: {name}
spec:
local:
type: "COS"
accessKeyID: {accessKey}
secretAccessKey: {secretAccessKey}
endpoint: {endpoint}
bucket: {bucket}
region: {region}
"""
data = yaml.safe_load(dataset_spec)
convert_none_to_str(data)
return data