Skip to content

PVCs for Pipelines SDK

Yiannis Gkoufas edited this page Oct 5, 2020 · 6 revisions

We will show how you can use DLF to provision Persistent Volume Claims via DLF so you can use it within Pipelines SDK.

Requirements

You have kubeflow installed and you can deploy pipelines using the Pipeline SDK.

Make sure you first follow the guide for Installation

We will just how you can adopt the examples located in contrib/volume_ops

NOTE: For this guide you can use both an empty and pre-populated with data bucket.

Example with creation of Dataset before the pipeline execution

First you need to create a Dataset to point to the bucket you want to use. Create a file that looks like this:

apiVersion: com.ie.ibm.hpsys/v1alpha1
kind: Dataset
metadata:
  name: your-dataset
spec:
  local:
    type: "COS"
    accessKeyID: "access_key_id"
    secretAccessKey: "secret_access_key"
    endpoint: "https://YOUR_ENDPOINT"
    bucket: "YOUR_BUCKET"
    region: "" #it can be empty

Now just execute:

kubectl create -f my-dataset.yaml -n {my-namespace}

Now within {my-namespace} you will find a PVC which you can use within your pipelines SDK without a problem.

You can see the example below which can use the PVC which was created out of your dataset.

import kfp
import kfp.dsl as dsl
from kfp.dsl import PipelineVolume


@dsl.pipeline(
    name="Volume Op DAG",
    description="The second example of the design doc."
)
def volume_op_dag():

    dataset = PipelineVolume("your-dataset")

    step1 = dsl.ContainerOp(
        name="step1",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo 1|tee /data/file1"],
        pvolumes={"/data": dataset}
    )

    step2 = dsl.ContainerOp(
        name="step2",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["cp /data/file1 /data/file2"],
        pvolumes={"/data": step1.pvolume}
    )

    step3 = dsl.ContainerOp(
        name="step3",
        image="library/bash:4.4.23",
        command=["cat", "/mnt/file1", "/mnt/file2"],
        pvolumes={"/mnt": step2.pvolume}
    )



if __name__ == "__main__":
    import kfp.compiler as compiler
    compiler.Compiler().compile(volume_op_dag, __file__ + ".tar.gz")

Example with creation of Dataset as part of the pipeline execution

If instead you want to create a Dataset as part of your pipeline, you can create the Dataset yaml and invoke a ResourceOp.

Before that you need to make sure that the service account pipeline-runner in namespace kubeflow can create/delete Datasets, so make sure you execute kubectl apply -f examples/kubeflow/pipeline-runner-binding.yaml before running the pipeline. The example rolebinding definition is in examples/kubeflow/pipeline-runner-binding.yaml

In the following pipeline we are creating the Dataset in step0 and then proceed to step1 to use it:

import kfp.dsl as dsl
import yaml
from kfp.dsl import PipelineVolume

# Make sure that you have applied ./pipeline-runner-binding.yaml
# or any serviceAccount that should be allowed to create/delete datasets

@dsl.pipeline(
    name="Volume Op DAG",
    description="The second example of the design doc."
)
def volume_op_dag():

    datasetName = "your-dataset"
    dataset = PipelineVolume(datasetName)

    step0 = dsl.ResourceOp(name="dataset-creation",k8s_resource=get_dataset_yaml(
        datasetName,
        "XXXXXXXXXXXXXXX",
        "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
        "http://your_endpoint.com",
        "bucket-name",
        ""
    ))

    step1 = dsl.ContainerOp(
        name="step1",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["echo 1|tee /data/file1"],
        pvolumes={"/data": dataset}
    ).after(step0)

    step2 = dsl.ContainerOp(
        name="step2",
        image="library/bash:4.4.23",
        command=["sh", "-c"],
        arguments=["cp /data/file1 /data/file2"],
        pvolumes={"/data": step1.pvolume}
    )

    step3 = dsl.ContainerOp(
        name="step3",
        image="library/bash:4.4.23",
        command=["cat", "/mnt/file1", "/mnt/file2"],
        pvolumes={"/mnt": step2.pvolume}
    )

def get_dataset_yaml(name,accessKey,secretAccessKey,endpoint,bucket,region):
    print(region)
    dataset_spec = f"""
    apiVersion: com.ie.ibm.hpsys/v1alpha1
    kind: Dataset
    metadata:
      name: {name}
    spec:
      local:
        type: "COS"
        accessKeyID: {accessKey}
        secretAccessKey: {secretAccessKey}
        endpoint: {endpoint}
        bucket: {bucket}
        region: {region}
    """
    data = yaml.safe_load(dataset_spec)
    convert_none_to_str(data)
    return data