-
Notifications
You must be signed in to change notification settings - Fork 0
/
crosssection.py
417 lines (334 loc) · 14.5 KB
/
crosssection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 10 20:24:38 2012
@author: dave
"""
import numpy as np
#import scipy.integrate as integrate
#import pylab as plt
import math
import scipy as sp
#import timeit
import HawcPy
class test:
def __init__(self):
"""
"""
pass
def prop_ring(self):
"""
Test properties for a ring, modelled as a thin walled something
"""
radius = 1.
# make sure the simple test cases go well
x = np.linspace(0,radius,100000)
y = np.sqrt(radius*radius - x*x)
x = np.append(-x[::-1], x)
y_up = np.append(y[::-1], y)
tw1 = np.ndarray((len(x),3), order='F')
tw1[:,0] = x
tw1[:,1] = y_up
tw1[:,2] = 0.01
tw2 = np.ndarray((len(x),3), order='F')
y_low = np.append(-y[::-1], -y)
tw2[:,0] = x
tw2[:,1] = y_low
tw2[:,2] = 0.01
# tw1 and tw2 need to be of the same size, give all zeros
upper_bound = sp.zeros((4,2), order='F')
lower_bound = sp.zeros((4,2), order='F')
st_arr, EA, EIxx, EIyy = properties(upper_bound, lower_bound,
tw1=tw1, tw2=tw2, rho=1., rho_tw=1., E=1., E_tw=1.)
headers = HawcPy.ModelData().st_column_header_list
print '\nRING PROPERTIES'
for index, item in enumerate(headers):
tmp = item + ' :'
print tmp.rjust(8), st_arr[index]
def prop_solidcircle(self):
"""
Test properties for a solid circle and compare with theory
"""
radius = 1.
r = radius
# make sure the simple test cases go well
x = np.linspace(0,radius,100000)
y = np.sqrt(radius*radius - x*x)
x = np.append(-x[::-1], x)
y_up = np.append(y[::-1], y)
upper_bound = np.ndarray((len(x),2), order='F')
upper_bound[:,0] = x
upper_bound[:,1] = y_up
lower_bound = np.ndarray((len(x),2), order='F')
y_low = np.append(-y[::-1], -y)
lower_bound[:,0] = x
lower_bound[:,1] = y_low
# tw1 and tw2 need to be of the same size, give all zeros
tw1 = sp.zeros((len(x),3), order='F')
tw2 = sp.zeros((len(x),3), order='F')
# and return as a 1D array, with st ordering of the elements
#0 1 2 3 4 5 6 7 8 9 10 11 12
#r m x_cg y_cg ri_x ri_y x_sh y_sh E G I_x I_y J
#13 14 15 16 17 18
#k_x k_y A pitch x_e y_e
st_arr, EA, EIxx, EIyy = properties(upper_bound, lower_bound,
tw1=tw1, tw2=tw2, rho=1., rho_tw=1., E=1., E_tw=1.)
headers = HawcPy.ModelData().st_column_header_list
print '\nSOLID CIRCLE PROPERTIES'
for index, item in enumerate(headers):
tmp = item + ' :'
print tmp.rjust(8), st_arr[index]
if not np.allclose(st_arr[1], np.pi*r*r): print 'A WRONG !!'
if not np.allclose(st_arr[2], 0): print 'x_cg WRONG !!'
if not np.allclose(st_arr[3], 0): print 'y_cg WRONG !!'
if not np.allclose(st_arr[4], r/2.): print 'ri_x WRONG !!'
if not np.allclose(st_arr[5], r/2.): print 'ri_y WRONG !!'
if not np.allclose(st_arr[6], 0): print 'x_sh WRONG !!'
if not np.allclose(st_arr[7], 0): print 'y_sh WRONG !!'
if not np.allclose(st_arr[10], np.pi*r*r*r*r/4): print 'Ixx WRONG !!'
if not np.allclose(st_arr[11], np.pi*r*r*r*r/4): print 'Iyy WRONG !!'
# check speed
#%timeit properties(upper_bound, lower_bound, tw1=tw1, tw2=tw2,
#rho=1., rho_tw=1., E=1., E_tw=1.)
def properties(upper_bound, lower_bound, tw1=[], tw2=[], rho=1.,
rho_tw=1., E=1., E_tw=1., tests=False, verplot=False,
order='F', st_arr_tw=False):
"""
Cross sectional airfoil properties
==================================
Calculate the cross sectional properties of a general shape defined by
an upper and lower bound function, or/and by a thin walled curve.
The upper and lower coordinates should have the same x coordinates,
as given by coord_continuous() and interp_airfoils().
This method is a piecewise linear integration method that also
calculates the second moment of inertia wrt the neutral x and y axis.
Note that for the mass moment of inertia we have: Im_xx = Ixx*rho
Parameters
----------
upper_bound : ndarray(m,2)
Upper bounded curve (x,y)
lower_bound : ndarray(m,2)
Lower bounded curve (x,y)
tw1 : ndarray(n,3), default=0
Thin walled curve and corresponding thickness (x,y,t). x grid can be
different than upper and lower_bound, but tw1 and tw2 need to have the
same number of points (not necessarily identical though)
tw2 : ndarray(n,3), default=0
Thin walled curve and corresponding thickness (x,y,t). x grid can be
different than upper and lower_bound, but tw1 and tw2 need to have the
same number of points (not necessarily identical though)
tests : boolean, default=False
rho : float or ndarray(m), default=1
rho_tw : float or ndarray(n), default=1
E=1 : float or ndarray(m), default=1
E_tw=1 : float, default=1
verplot=False,
order='F'
st_arr_tw=False
overwrites E_tw and rho_tw
Returns
-------
A
x_na
y_na
Ixx
Iyy
"""
# increase speed: convert to fortran memory layout because we are using
# the numpy C layout WRONG: using the first index with a C array is SLOW
# however, if the second dimension is small (like here it is 2 or 3)
# there isn't much difference
#if asfortran:
#print 'convert to F'
#upper_bound = np.asfortranarray(upper_bound)
#lower_bound = np.asfortranarray(lower_bound)
# TODO: data checks
# continuity: does it? I think it can deal with any curvature
# better and seperate tests and result verification
# make sure the grids for both upper and lower surface are the same
if not np.allclose(upper_bound[:,0], lower_bound[:,0]):
msg = 'coord_up and low need to be defined on the same grid'
raise ValueError, msg
# TODO: if not, interpolate and fix it on equal x grids
# get data out of the structural array for the thin walled piece
if type(st_arr_tw).__name__ is 'ndarray':
sti = HawcPy.ModelData().st_headers
E_tw = st_arr_tw[sti.E]
rho_tw = st_arr_tw[sti.m] / st_arr_tw[sti.A]
# NUMERICAL APPROACH: split up into blocks. Sinc6e we already
# interpolated the coordinates to a high res grid, this approach
# should be sound. The upper block is a triangle, lower is just a
# rectangle (see drawings)
# even though they are identical, put in one array to have the
# correct summation over all the elements of upper and lower curve
x = np.ndarray((len(upper_bound),2), dtype=np.float128, order=order)
x[:,0] = upper_bound[:,0]
x[:,1] = lower_bound[:,0]
x1 = x[:-1,:]
# for convience, put both y's in one array: [x, up, low]
y = np.ndarray((len(upper_bound),2), dtype=np.float128, order=order)
y[:,0] = upper_bound[:,1]
y[:,1] = lower_bound[:,1]
# y1, first y value of each element
y1 = y[:-1,:]
# for the thin walled curve
x_tw = np.ndarray((len(tw1),2), dtype=np.float128, order=order)
y_tw = np.ndarray((len(tw1),2), dtype=np.float128, order=order)
t_tw = np.ndarray((len(tw1),2), dtype=np.float128, order=order)
x_tw[:,0] = tw1[:,0]
x_tw[:,1] = tw2[:,0]
y_tw[:,0] = tw1[:,1]
y_tw[:,1] = tw2[:,1]
t_tw[:,0] = tw1[:,2]
t_tw[:,1] = tw2[:,2]
# delta's define each element
x1_tw = x_tw[:-1,:]
y1_tw = y_tw[:-1,:]
dx = np.diff(x, axis=0)
dy = np.diff(y, axis=0)
dx_tw = np.diff(x_tw, axis=0)
dy_tw = np.diff(y_tw, axis=0)
# ===== AREA =====
# we have the top triangle (A) and the bottom rectangle (B)
# This approach goes right automatically. When dy<0, B is too big
# (because y1 > y2) and dA_a gets negative. Other way around for lower
# surface. Note that we need to be consistent in this approach all
# the way through
dA_a = dx * dy * 0.5
dA_b = y1 * dx
# reverse sign for lower surface area's, they are negative if under
# the y axis=0
dA_a[:,1] *= -1.
dA_b[:,1] *= -1.
# area of elements for the thin walled section is much simpler
dl_tw = np.sqrt( (dx_tw*dx_tw) + (dy_tw*dy_tw) )
dA_tw = dl_tw*t_tw[:-1,:]
# in case we have a zero dy_tw
if np.allclose(dy_tw, sp.zeros(dy_tw.shape)):
t_star = sp.zeros(dy_tw.shape)
else:
t_star = dA_tw / dy_tw
# total area is then
A = np.sum(dA_a + dA_b) + np.nansum(dA_tw)
# ===== CENTROID =====
# cg positions for each block with respect to (x,y)=(0,0)
# upper and lower share the same x_cg positions
x_ct_b = x1 + (dx*0.5)
y_ct_b = y1*0.5
# inclined side is directed towards y axis, so 2x/3 instead of x/3.
x_ct_a = (2.*dx/3.) + x1
# when on the lower side this reverses, but since then y1 > y2,
# and y1 + dy/3 becomes y2 + 2*dy/3. Check the figures for better
# and more correct understanding/description of why it goes right.
y_ct_a = (dy/3.) + y1
# fot the thin walled pieces
x_ct_tw = x1_tw + (dx_tw*0.5)
y_ct_tw = y1_tw + (dy_tw*0.5)
# find the centroid wrt (0,0)
#x_ct = np.sum( (dA_a*x_ct_a) + (dA_b*x_ct_b) + (dA_tw*x_ct_tw) ) /A
#y_ct = np.sum( (dA_a*y_ct_a) + (dA_b*y_ct_b) + (dA_tw*y_ct_tw) ) /A
# ===== MASS =====
# total section mass
m = np.sum(rho*dA_a + rho*dA_b) + np.nansum(rho_tw*dA_tw)
# ===== CENTER OF GRAVITY =====
# and hence
x_cg = ( np.sum( (rho*dA_a*x_ct_a) + (rho*dA_b*x_ct_b) )\
+ np.nansum(rho_tw*dA_tw*x_ct_tw) ) /m
y_cg = ( np.sum( (rho*dA_a*y_ct_a) + (rho*dA_b*y_ct_b) )\
+ np.nansum(rho_tw*dA_tw*y_ct_tw) ) /m
# ===== NEUTRAL AXIS =====
ea_s = np.sum(E*dA_a + E*dA_b) + np.nansum(E_tw*dA_tw)
x_na = ( np.sum( (E*dA_a*x_ct_a) + (E*dA_b*x_ct_b) )\
+ np.nansum(E_tw*dA_tw*x_ct_tw) ) / (ea_s)
y_na = ( np.sum( (E*dA_a*y_ct_a) + (E*dA_b*y_ct_b) )\
+ np.nansum(E_tw*dA_tw*y_ct_tw) ) / (ea_s)
# ===== MOMENTS OF INERTIA =====
# Moments of inertia for each piece around local cg
# since dy can switch sign, only consider absolute value
Ixx_cg_a = np.abs(dx*dy*dy*dy/36.)
Iyy_cg_a = np.abs(dx*dx*dx*dy/36.)
Ixx_cg_b = np.abs(dx*y1*y1*y1/12.)
Iyy_cg_b = np.abs(dx*dx*dx*y1/12.)
Ixx_cg_tw = np.abs(dA_tw*dy_tw*dy_tw/12.)
Iyy_cg_tw = np.abs(dA_tw*t_star*t_star/12.)
# the Steiner terms: distance local cg to neutral axis
Ixx_steiner_a = dA_a*(y_na-y_ct_a)*(y_na-y_ct_a)
Ixx_steiner_b = dA_b*(y_na-y_ct_b)*(y_na-y_ct_b)
Iyy_steiner_a = dA_a*(x_na-x_ct_a)*(x_na-x_ct_a)
Iyy_steiner_b = dA_b*(x_na-x_ct_b)*(x_na-x_ct_b)
Ixx_steiner_tw = dA_tw*(x_na-x_ct_tw)*(x_na-x_ct_tw)
Iyy_steiner_tw = dA_tw*(y_na-y_ct_tw)*(y_na-y_ct_tw)
# and finally the moments of inertia with respect to the neutral axis
Ixx = np.sum(Ixx_cg_a + Ixx_steiner_a + Ixx_cg_b + Ixx_steiner_b) \
+ np.nansum(Ixx_cg_tw + Ixx_steiner_tw)
Iyy = np.sum(Iyy_cg_a + Iyy_steiner_a + Iyy_cg_b + Iyy_steiner_b) \
+ np.nansum(Iyy_cg_tw + Iyy_steiner_tw)
# ===== MASS MOMENTS OF INERTIA =====
Im_xx_cg_a = np.abs(rho*dx*dy*dy*dy/36.)
Im_yy_cg_a = np.abs(rho*dx*dx*dx*dy/36.)
Im_xx_cg_b = np.abs(rho*dx*y1*y1*y1/12.)
Im_yy_cg_b = np.abs(rho*dx*dx*dx*y1/12.)
Im_xx_cg_tw = np.abs(rho_tw*dA_tw*dy_tw*dy_tw/12.)
Im_yy_cg_tw = np.abs(rho_tw*dA_tw*t_star*t_star/12.)
# the Steiner terms: distance local cg to neutral axis
Im_xx_steiner_a = rho*dA_a*(y_na-y_ct_a)*(y_na-y_ct_a)
Im_xx_steiner_b = rho*dA_b*(y_na-y_ct_b)*(y_na-y_ct_b)
Im_yy_steiner_a = rho*dA_a*(x_na-x_ct_a)*(x_na-x_ct_a)
Im_yy_steiner_b = rho*dA_b*(x_na-x_ct_b)*(x_na-x_ct_b)
Im_xx_steiner_tw = rho_tw*dA_tw*(x_na-x_ct_tw)*(x_na-x_ct_tw)
Im_yy_steiner_tw = rho_tw*dA_tw*(y_na-y_ct_tw)*(y_na-y_ct_tw)
# and finally the moments of inertia with respect to the neutral axis
Im_xx = np.sum(Im_xx_cg_a + Im_xx_steiner_a + Im_xx_cg_b \
+ Im_xx_steiner_b) + np.nansum(Im_xx_cg_tw + Im_xx_steiner_tw)
Im_yy = np.sum(Im_yy_cg_a + Im_yy_steiner_a + Im_yy_cg_b \
+ Im_yy_steiner_b) + np.nansum(Im_yy_cg_tw + Im_yy_steiner_tw)
# convert to radius of gyration
ri_x = math.sqrt(Im_xx/m)
ri_y = math.sqrt(Im_yy/m)
# ===== BEAM STIFFNESS =====
EA = np.sum(E*(dA_a + dA_b)) + np.nansum(E_tw*dA_tw)
EIxx = np.sum( E*(Ixx_cg_a + Ixx_steiner_a + Ixx_cg_b + Ixx_steiner_b) )\
+ np.nansum(E_tw*(Ixx_cg_tw + Ixx_steiner_tw))
EIyy = np.sum( E*(Iyy_cg_a + Iyy_steiner_a + Iyy_cg_b + Iyy_steiner_b) )\
+ np.nansum(E_tw*(Iyy_cg_tw + Iyy_steiner_tw))
# and return as a 1D array, with st ordering of the elements
#0 1 2 3 4 5 6 7 8 9 10 11 12
#r m x_cg y_cg ri_x ri_y x_sh y_sh E G I_x I_y J
#13 14 15 16 17 18
#k_x k_y A pitch x_e y_e
# expres x_cg, y_cg, x_na and y_na wrt half chord point instead of LE
# express x_na and y_na wrt half chord point
# chord length is determined by knowing the TE and LE coordinates
# LE should be (0,0), but take into account just to be sure
x = upper_bound[-1,0] - upper_bound[0,0]
y = upper_bound[-1,1] - upper_bound[0,1]
chordlen = math.sqrt(x*x + y*y)
c2 = chordlen/2.
cos_a = x/chordlen
sin_a = y/chordlen
x_c2 = cos_a*c2
y_c2 = sin_a*c2
# and convert to half chord point coordinates
# first the translation of the coordinate system
xna_norot = x_c2 - x_na
yna_norot = y_c2 + y_na
xcg_norot = x_c2 - x_cg
ycg_norot = y_c2 + y_cg
# and than the rotation due to camber, if any
#theta = math.acos(cos_a)
#x_na = xna_norot*math.cos(theta) - yna_norot*math.sin(theta)
#y_na = xna_norot*math.sin(theta) + yna_norot*math.cos(theta)
#x_cg = xcg_norot*math.cos(theta) - ycg_norot*math.sin(theta)
#y_cg = xcg_norot*math.sin(theta) + ycg_norot*math.cos(theta)
# since we ingored camber line angle already with the moments of inertia
# ignore it here as well
x_na = xna_norot
y_na = yna_norot
x_cg = xcg_norot
y_cg = ycg_norot
st_arr = np.array([np.nan, m, x_cg, y_cg, ri_x, ri_y, x_na, y_na, E,np.nan,
Ixx,Iyy, Ixx+Iyy, np.nan, np.nan, A, np.nan, x_na, y_na])
return st_arr, EA, EIxx, EIyy
if __name__ == '__main__':
tests = test()
tests.prop_solidcircle()
tests.prop_ring()