-
Notifications
You must be signed in to change notification settings - Fork 0
/
filters.py
488 lines (379 loc) · 17 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 20 18:14:02 2013
@author: dave
"""
import numpy as np
import scipy as sp
from scipy import signal
import DataChecks as chk
from misc import calc_sample_rate
import plotting
class Filters:
def __init__(self):
pass
def smooth(self, x, window_len=11, window='hanning'):
"""
Smooth the data using a window with requested size
==================================================
This method is based on the convolution of a scaled window with the
signal. The signal is prepared by introducing reflected copies of the
signal (with the window size) in both ends so that transient parts are
minimized in the begining and end part of the output signal.
input:
x: the input signal
window_len: the dimension of the smoothing window; should be an odd
integer
window: the type of window from 'flat', 'hanning', 'hamming',
'bartlett', 'blackman' flat window will produce a moving average
smoothing.
output:
the smoothed signal
example:
t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman,
numpy.convolve, scipy.signal.lfilter
TODO: the window parameter could be the window itself if an array
instead of a string
SOURCE: http://www.scipy.org/Cookbook/SignalSmooth
"""
if x.ndim != 1:
raise ValueError, "smooth only accepts 1 dimension arrays."
if x.size < window_len:
msg = "Input vector needs to be bigger than window size."
raise ValueError, msg
if window_len<3:
return x
windowlist = ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']
if not window in windowlist:
msg = "Window should be 'flat', 'hanning', 'hamming', 'bartlett',"
msg += " or 'blackman'"
raise ValueError, msg
s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]]
#print(len(s))
if window == 'flat': #moving average
w = np.ones(window_len,'d')
else:
w = eval('np.'+window+'(window_len)')
y = np.convolve(w/w.sum(), s, mode='valid')
return y
def butter(self, time, data, **kwargs):
"""
Source:
https://azitech.wordpress.com/2011/03/15/
designing-a-butterworth-low-pass-filter-with-scipy/
"""
sample_rate = kwargs.get('sample_rate', None)
if not sample_rate:
sample_rate = calc_sample_rate(time)
# The cutoff frequency of the filter.
cutoff_hz = kwargs.get('cutoff_hz', 1.0)
# design filter
norm_pass = cutoff_hz/(sample_rate/2.0)
norm_stop = 1.5*norm_pass
(N, Wn) = sp.signal.buttord(wp=norm_pass, ws=norm_stop, gpass=2,
gstop=30, analog=0)
(b, a) = sp.signal.butter(N, Wn, btype='low', analog=0, output='ba')
# filtered output
#zi = signal.lfiltic(b, a, x[0:5], x[0:5])
#(y, zi) = signal.lfilter(b, a, x, zi=zi)
data_filt = sp.signal.lfilter(b, a, data)
return data_filt
def butter_lowpass(self, sps, data, order=2, cutoff_hz=1.0):
"""Simple Butterworth lowpass filter.
Source:
https://oceanpython.org/2013/03/11/signal-filtering-butterworth-filter/
"""
# Normalized wrt Nyquist frequency
Wn = cutoff_hz*2.0/sps
# design filter
B, A = signal.butter(order, Wn, output='ba')
# Second, apply the filter
return signal.filtfilt(B, A, data)
def linregress(self, x, y, samples):
"""Perform a linear regression at each sample, looking forward for
the specified amount of samples. Returns array of lenght len(x)-samples.
Returns
-------
regress : ndarray(len(x)-samples, 5)
2nd dimension holds: slope, intercept, r_value, p_value, std_err
(outcome of scipy.stats.linregress)
"""
regress = np.ndarray((len(x)-samples, 5))
for i in xrange(regress.shape[0]):
i1 = i + samples
# slope, intercept, r_value, p_value, std_err
regress[i,:] = sp.stats.linregress(x[i:i1], y=y[i:i1])
return regress
def fir(self, time, data, **kwargs):
"""
Based on the xxample from the SciPy cook boock, see
http://www.scipy.org/Cookbook/FIRFilter
Parameters
----------
time : ndarray(n)
data : ndarray(n)
plot : boolean, default=False
figpath : str, default=False
figfile : str, default=False
sample_rate : int, default=None
If None, sample rate will be calculated from the given signal
freq_trans_width : float, default=1
The desired width of the transition from pass to stop,
relative to the Nyquist rate.
ripple_db : float, default=10
The desired attenuation in the stop band, in dB.
cutoff_hz : float, default=10
Frequencies above cutoff_hz are filtered out
Returns
-------
filtered_x : ndarray(n - (N-1))
filtered signal
N : float
order of the firwin filter
delay : float
phase delay due to the filtering process
"""
plot = kwargs.get('plot', False)
figpath = kwargs.get('figpath', False)
figfile = kwargs.get('figfile', False)
sample_rate = kwargs.get('sample_rate', None)
# The desired width of the transition from pass to stop,
# relative to the Nyquist rate. We'll design the filter
# with a 5 Hz transition width.
freq_trans_width = kwargs.get('freq_trans_width', 1)
# The desired attenuation in the stop band, in dB.
ripple_db = kwargs.get('ripple_db', 10)
# The cutoff frequency of the filter.
cutoff_hz = kwargs.get('cutoff_hz', 10)
chk.array_1d(time)
chk.array_1d(data)
if not sample_rate:
sample_rate = calc_sample_rate(time)
#------------------------------------------------
# Create a FIR filter and apply it to data[:,channel]
#------------------------------------------------
# The Nyquist rate of the signal.
nyq_rate = sample_rate / 2.0
# The desired width of the transition from pass to stop,
# relative to the Nyquist rate. We'll design the filter
# with a 5 Hz transition width.
width = freq_trans_width/nyq_rate
# Compute the order and Kaiser parameter for the FIR filter.
N, beta = sp.signal.kaiserord(ripple_db, width)
# Use firwin with a Kaiser window to create a lowpass FIR filter.
taps = sp.signal.firwin(N, cutoff_hz/nyq_rate, window=('kaiser', beta))
# Use lfilter to filter x with the FIR filter.
filtered_x = sp.signal.lfilter(taps, 1.0, data)
# The phase delay of the filtered signal.
delay = 0.5 * (N-1) / sample_rate
# # the filtered signal, shifted to compensate for the phase delay.
# time_shifted = time-delay
# # the "good" part of the filtered signal. The first N-1
# # samples are "corrupted" by the initial conditions.
# time_good = time[N-1:] - delay
if plot:
self.plot_fir(figpath, figfile, time, data, filtered_x, N, delay,
sample_rate, taps, nyq_rate)
return filtered_x, N, delay
def plot_fir(self, figpath, figfile, time, data, filtered_x, N, delay,
sample_rate, taps, nyq_rate):
"""
"""
#------------------------------------------------
# Setup the figure parameters
#------------------------------------------------
plot = plotting.A4Tuned()
plot.setup(figpath+figfile, nr_plots=3, grandtitle=figfile,
figsize_y=20, wsleft_cm=2.)
#------------------------------------------------
# Plot the FIR filter coefficients.
#------------------------------------------------
plot_nr = 1
ax1 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
ax1.plot(taps, 'bo-', linewidth=2)
ax1.set_title('Filter Coefficients (%d taps)' % N)
ax1.grid(True)
#------------------------------------------------
# Plot the magnitude response of the filter.
#------------------------------------------------
plot_nr += 1
ax2 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
w, h = sp.signal.freqz(taps, worN=8000)
ax2.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2.set_xlabel('Frequency (Hz)')
ax2.set_ylabel('Gain')
ax2.set_title('Frequency Response')
ax2.set_ylim(-0.05, 1.05)
# ax2.grid(True)
# in order to place the nex axes inside following figure, first
# determine the ax2 bounding box
# points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]
ax2box = ax2.get_window_extent().get_points()
# seems to be expressed in pixels so convert to relative coordinates
# print ax2box
# figure size in pixels
figsize_x_pix = plot.figsize_x*plot.dpi
figsize_y_pix = plot.figsize_y*plot.dpi
# ax2 box in relative coordinates
ax2box[:,0] = ax2box[:,0] / figsize_x_pix
ax2box[:,1] = ax2box[:,1] / figsize_y_pix
# print ax2box[0,0], ax2box[1,0], ax2box[0,1], ax2box[1,1]
# left position new box at 10% of x1
left = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.15)
bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30) # x2
width = (ax2box[1,0] - ax2box[0,0]) * 0.35
height = (ax2box[1,1] - ax2box[0,1]) * 0.6
# print [left, bottom, width, height]
# left inset plot.
# [left, bottom, width, height]
# ax2a = plot.fig.add_axes([0.42, 0.6, .45, .25])
ax2a = plot.fig.add_axes([left, bottom, width, height])
ax2a.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2a.set_xlim(0,8.0)
ax2a.set_ylim(0.9985, 1.001)
ax2a.grid(True)
# right inset plot
left = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.62)
bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30) # x2
width = (ax2box[1,0] - ax2box[0,0]) * 0.35
height = (ax2box[1,1] - ax2box[0,1]) * 0.6
# Lower inset plot
# ax2b = plot.fig.add_axes([0.42, 0.25, .45, .25])
ax2b = plot.fig.add_axes([left, bottom, width, height])
ax2b.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2b.set_xlim(12.0, 20.0)
ax2b.set_ylim(0.0, 0.0025)
ax2b.grid(True)
#------------------------------------------------
# Plot the original and filtered signals.
#------------------------------------------------
# The phase delay of the filtered signal.
delay = 0.5 * (N-1) / sample_rate
plot_nr += 1
ax3 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
# Plot the original signal.
ax3.plot(time, data, label='original signal')
# Plot the filtered signal, shifted to compensate for the phase delay.
ax3.plot(time-delay, filtered_x, 'r-', label='filtered signal')
# Plot just the "good" part of the filtered signal. The first N-1
# samples are "corrupted" by the initial conditions.
ax3.plot(time[N-1:]-delay, filtered_x[N-1:], 'g', linewidth=4)
ax3.set_xlabel('t')
ax3.grid(True)
plot.save_fig()
def scipy_example(self, time, data, sample_rate=None):
"""
Example from the SciPy Cookboock, see
http://www.scipy.org/Cookbook/FIRFilter
"""
chk.array_1d(time)
chk.array_1d(data)
if not sample_rate:
sample_rate = calc_sample_rate(time)
#------------------------------------------------
# Create a FIR filter and apply it to data[:,channel]
#------------------------------------------------
# The Nyquist rate of the signal.
nyq_rate = sample_rate / 2.0
# The desired width of the transition from pass to stop,
# relative to the Nyquist rate. We'll design the filter
# with a 5 Hz transition width.
width = 5.0/nyq_rate
# The desired attenuation in the stop band, in dB.
ripple_db = 60.0
# Compute the order and Kaiser parameter for the FIR filter.
N, beta = sp.signal.kaiserord(ripple_db, width)
# The cutoff frequency of the filter.
cutoff_hz = 10.0
# Use firwin with a Kaiser window to create a lowpass FIR filter.
taps = sp.signal.firwin(N, cutoff_hz/nyq_rate, window=('kaiser', beta))
# Use lfilter to filter x with the FIR filter.
filtered_x = sp.signal.lfilter(taps, 1.0, data)
#------------------------------------------------
# Setup the figure parameters
#------------------------------------------------
figpath = 'processing/'
figfile = 'filterdesign'
plot = plotting.A4Tuned()
plot.setup(figpath+figfile, nr_plots=3, grandtitle=figfile,
figsize_y=20, wsleft_cm=2.)
#------------------------------------------------
# Plot the FIR filter coefficients.
#------------------------------------------------
plot_nr = 1
ax1 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
ax1.plot(taps, 'bo-', linewidth=2)
ax1.set_title('Filter Coefficients (%d taps)' % N)
ax1.grid(True)
#------------------------------------------------
# Plot the magnitude response of the filter.
#------------------------------------------------
plot_nr += 1
ax2 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
w, h = sp.signal.freqz(taps, worN=8000)
ax2.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2.set_xlabel('Frequency (Hz)')
ax2.set_ylabel('Gain')
ax2.set_title('Frequency Response')
ax2.set_ylim(-0.05, 1.05)
# ax2.grid(True)
# in order to place the nex axes inside following figure, first
# determine the ax2 bounding box
# points: a 2x2 numpy array of the form [[x0, y0], [x1, y1]]
ax2box = ax2.get_window_extent().get_points()
# seems to be expressed in pixels so convert to relative coordinates
# print ax2box
# figure size in pixels
figsize_x_pix = plot.figsize_x*plot.dpi
figsize_y_pix = plot.figsize_y*plot.dpi
# ax2 box in relative coordinates
ax2box[:,0] = ax2box[:,0] / figsize_x_pix
ax2box[:,1] = ax2box[:,1] / figsize_y_pix
# print ax2box[0,0], ax2box[1,0], ax2box[0,1], ax2box[1,1]
# left position new box at 10% of x1
left = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.15)
bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30) # x2
width = (ax2box[1,0] - ax2box[0,0]) * 0.35
height = (ax2box[1,1] - ax2box[0,1]) * 0.6
# print [left, bottom, width, height]
# left inset plot.
# [left, bottom, width, height]
# ax2a = plot.fig.add_axes([0.42, 0.6, .45, .25])
ax2a = plot.fig.add_axes([left, bottom, width, height])
ax2a.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2a.set_xlim(0,8.0)
ax2a.set_ylim(0.9985, 1.001)
ax2a.grid(True)
# right inset plot
left = ax2box[0,0] + ((ax2box[1,0] - ax2box[0,0]) * 0.62)
bottom = ax2box[0,1] + ((ax2box[1,1] - ax2box[0,1]) * 0.30) # x2
width = (ax2box[1,0] - ax2box[0,0]) * 0.35
height = (ax2box[1,1] - ax2box[0,1]) * 0.6
# Lower inset plot
# ax2b = plot.fig.add_axes([0.42, 0.25, .45, .25])
ax2b = plot.fig.add_axes([left, bottom, width, height])
ax2b.plot((w/np.pi)*nyq_rate, np.absolute(h), linewidth=2)
ax2b.set_xlim(12.0, 20.0)
ax2b.set_ylim(0.0, 0.0025)
ax2b.grid(True)
#------------------------------------------------
# Plot the original and filtered signals.
#------------------------------------------------
# The phase delay of the filtered signal.
delay = 0.5 * (N-1) / sample_rate
plot_nr += 1
ax3 = plot.fig.add_subplot(plot.nr_rows, plot.nr_cols, plot_nr)
# Plot the original signal.
ax3.plot(time, data, label='original signal')
# Plot the filtered signal, shifted to compensate for the phase delay.
ax3.plot(time-delay, filtered_x, 'r-', label='filtered signal')
# Plot just the "good" part of the filtered signal. The first N-1
# samples are "corrupted" by the initial conditions.
ax3.plot(time[N-1:]-delay, filtered_x[N-1:], 'g', linewidth=4)
ax3.set_xlabel('t')
ax3.grid(True)
plot.save_fig()