Given an array of integers nums
sorted in ascending order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
Follow up: Could you write an algorithm with O(log n)
runtime complexity?
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8 Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6 Output: [-1,-1]
Example 3:
Input: nums = [], target = 0 Output: [-1,-1]
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
is a non-decreasing array.-109 <= target <= 109
Binary search.
class Solution:
def searchRange(self, nums: List[int], target: int) -> List[int]:
if len(nums) == 0:
return [-1, -1]
left, right = 0, len(nums) - 1
while left < right:
mid = (left + right) >> 1
if nums[mid] >= target:
right = mid
else:
left = mid + 1
if nums[left] != target:
return [-1, -1]
l, right = left, len(nums) - 1
while left < right:
mid = (left + right + 1) >> 1
if nums[mid] <= target:
left = mid
else:
right = mid - 1
return [l, left]
class Solution {
public int[] searchRange(int[] nums, int target) {
if (nums.length == 0) {
return new int[]{-1, -1};
}
// find first position
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = (left + right) >>> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
if (nums[left] != target) {
return new int[]{-1, -1};
}
int l = left;
// find last position
right = nums.length - 1;
while (left < right) {
int mid = (left + right + 1) >>> 1;
if (nums[mid] <= target) {
left = mid;
} else {
right = mid - 1;
}
}
return new int[]{l, left};
}
}
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target) {
if (nums.size() == 0) {
return vector<int>{-1, -1};
}
int left = 0, right = nums.size() - 1;
while (left < right) {
int mid = left + right >> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
if (nums[left] != target) {
return vector<int>{-1, -1};
}
int l = left;
right = nums.size() - 1;
while (left < right) {
int mid = left + right + 1 >> 1;
if (nums[mid] <= target) {
left = mid;
} else {
right = mid - 1;
}
}
return vector<int>{l, left};
}
};
/**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var searchRange = function(nums, target) {
if (nums.length == 0) {
return [-1, -1];
}
let left = 0;
let right = nums.length - 1;
while (left < right) {
const mid = (left + right) >> 1;
if (nums[mid] >= target) {
right = mid;
} else {
left = mid + 1;
}
}
if (nums[left] != target) {
return [-1, -1];
}
let l = left;
right = nums.length - 1;
while (left < right) {
const mid = (left + right + 1) >> 1;
if (nums[mid] <= target) {
left = mid;
} else {
right = mid - 1;
}
}
return [l, left];
};
func searchRange(nums []int, target int) []int {
if len(nums) == 0 {
return []int{-1, -1}
}
left, right := 0, len(nums)-1
for left < right {
mid := (left + right) >> 1
if nums[mid] >= target {
right = mid
} else {
left = mid + 1
}
}
if nums[left] != target {
return []int{-1, -1}
}
l := left
right = len(nums) - 1
for left < right {
mid := (left + right + 1) >> 1
if nums[mid] <= target {
left = mid
} else {
right = mid - 1
}
}
return []int{l, left}
}