给定一个整数数组 nums
,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1] 输出:1
示例 3:
输入:nums = [0] 输出:0
示例 4:
输入:nums = [-1] 输出:-1
示例 5:
输入:nums = [-100000] 输出:-100000
提示:
1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105
进阶:如果你已经实现复杂度为 O(n)
的解法,尝试使用更为精妙的 分治法 求解。
设 dp[i]
表示 [0..i]
中,以 nums[i]
结尾的最大子数组和,状态转移方程 dp[i] = nums[i] + max(dp[i - 1], 0)
。
由于 dp[i]
只与子问题 dp[i-1]
有关,故可以用一个变量 f 来表示。
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
res = f = nums[0]
for num in nums[1:]:
f = num + max(f, 0)
res = max(res, f)
return res
class Solution {
public int maxSubArray(int[] nums) {
int f = nums[0], res = nums[0];
for (int i = 1, n = nums.length; i < n; ++i) {
f = nums[i] + Math.max(f, 0);
res = Math.max(res, f);
}
return res;
}
}
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int f = nums[0], res = nums[0];
for (int i = 1; i < nums.size(); ++i) {
f = nums[i] + max(f, 0);
res = max(res, f);
}
return res;
}
};
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function (nums) {
let f = nums[0],
res = nums[0];
for (let i = 1; i < nums.length; ++i) {
f = nums[i] + Math.max(f, 0);
res = Math.max(res, f);
}
return res;
};
func maxSubArray(nums []int) int {
f, res := nums[0], nums[0]
for i := 1; i < len(nums); i++ {
if f > 0 {
f += nums[i]
} else {
f = nums[i]
}
if f > res {
res = f
}
}
return res
}
public class Solution {
public int MaxSubArray(int[] nums) {
int res = nums[0], f = nums[0];
for (int i = 1; i < nums.Length; ++i)
{
f = nums[i] + Math.Max(f, 0);
res = Math.Max(res, f);
}
return res;
}
}