Skip to content

Latest commit

 

History

History
149 lines (119 loc) · 2.89 KB

File metadata and controls

149 lines (119 loc) · 2.89 KB

中文文档

Description

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

 

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Example 2:

Input: nums = [1]
Output: 1

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

 

Constraints:

  • 1 <= nums.length <= 3 * 104
  • -105 <= nums[i] <= 105

 

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

Solutions

Python3

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        res = f = nums[0]
        for num in nums[1:]:
            f = num + max(f, 0)
            res = max(res, f)
        return res

Java

class Solution {
    public int maxSubArray(int[] nums) {
        int f = nums[0], res = nums[0];
        for (int i = 1, n = nums.length; i < n; ++i) {
            f = nums[i] + Math.max(f, 0);
            res = Math.max(res, f);
        }
        return res;
    }
}

C++

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int f = nums[0], res = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            f = nums[i] + max(f, 0);
            res = max(res, f);
        }
        return res;
    }
};

JavaScript

/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function (nums) {
  let f = nums[0],
    res = nums[0];
  for (let i = 1; i < nums.length; ++i) {
    f = nums[i] + Math.max(f, 0);
    res = Math.max(res, f);
  }
  return res;
};

Go

func maxSubArray(nums []int) int {
    f, res := nums[0], nums[0]
    for i := 1; i < len(nums); i++ {
        if f > 0 {
            f += nums[i]
        } else {
            f = nums[i]
        }
        if f > res {
            res = f
        }
    }
    return res
}

C#

public class Solution {
    public int MaxSubArray(int[] nums) {
        int res = nums[0], f = nums[0];
        for (int i = 1; i < nums.Length; ++i)
        {
            f = nums[i] + Math.Max(f, 0);
            res = Math.Max(res, f);
        }
        return res;
    }
}

...