Skip to content

Latest commit

 

History

History
237 lines (196 loc) · 5.25 KB

File metadata and controls

237 lines (196 loc) · 5.25 KB

中文文档

Description

Given the root of a binary tree, return the inorder traversal of its nodes' values.

 

Example 1:

Input: root = [1,null,2,3]
Output: [1,3,2]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

Example 4:

Input: root = [1,2]
Output: [2,1]

Example 5:

Input: root = [1,null,2]
Output: [1,2]

 

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

 

Follow up:

Recursive solution is trivial, could you do it iteratively?

 

Solutions

Python3

Recusive:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        def inorder(root):
            if root:
                inorder(root.left)
                res.append(root.val)
                inorder(root.right)
        res = []
        inorder(root)
        return res

Non-recursive:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: TreeNode) -> List[int]:
        s = []
        res = []
        while root or s:
            if root:
                s.append(root)
                root = root.left
            else:
                root = s.pop()
                res.append(root.val)
                root = root.right
        return res

Java

Recursive:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {

    private List<Integer> res;

    public List<Integer> inorderTraversal(TreeNode root) {
        res = new ArrayList<>();
        inorder(root);
        return res;
    }

    private void inorder(TreeNode root) {
        if (root != null) {
            inorder(root.left);
            res.add(root.val);
            inorder(root.right);
        }
    }
}

Non-recursive:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        if (root == null) {
            return Collections.emptyList();
        }
        List<Integer> res = new ArrayList<>();
        Deque<TreeNode> s = new ArrayDeque<>();
        while (root != null || !s.isEmpty()) {
            if (root != null) {
                s.push(root);
                root = root.left;
            } else {
                root = s.pop();
                res.add(root.val);
                root = root.right;
            }
        }
        return res;
    }
}

JavaScript

Recursive:

var inorderTraversal = function(root) {
    let res = [];
    function inorder(root){
        if(root){
        inorder(root.left);
        res.push(root.val);
        inorder(root.right);
        }
    }
    inorder(root);
    return res;
};

Non-recursive:

var inorderTraversal = function (root) {
    let res = [], stk = [];
    let cur = root;
    while (cur || stk.length !== 0) {
        while (cur) {
            stk.push(cur);
            cur = cur.left;
        } 
        let top = stk.pop();
        res.push(top.val);
        cur = top.right;

    }
    return res;
};

...