Skip to content

Latest commit

 

History

History
166 lines (123 loc) · 4.38 KB

File metadata and controls

166 lines (123 loc) · 4.38 KB

中文文档

Description

Implement a last in first out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal queue (push, top, pop, and empty).

Implement the MyStack class:

  • void push(int x) Pushes element x to the top of the stack.
  • int pop() Removes the element on the top of the stack and returns it.
  • int top() Returns the element on the top of the stack.
  • boolean empty() Returns true if the stack is empty, false otherwise.

Notes:

  • You must use only standard operations of a queue, which means only push to back, peek/pop from front, size, and is empty operations are valid.
  • Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue), as long as you use only a queue's standard operations.

 

Example 1:

Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]

Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False

 

Constraints:

  • 1 <= x <= 9
  • At most 100 calls will be made to push, pop, top, and empty.
  • All the calls to pop and top are valid.

 

Follow-up: Can you implement the stack such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer. You can use more than two queues.

Solutions

Python3

class MyStack:

    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.q = []


    def push(self, x: int) -> None:
        """
        Push element x onto stack.
        """
        self.q.append(x)
        n = len(self.q)
        for i in range(1, n):
            self.q.append(self.q.pop(0))


    def pop(self) -> int:
        """
        Removes the element on top of the stack and returns that element.
        """
        return self.q.pop(0)


    def top(self) -> int:
        """
        Get the top element.
        """
        return self.q[0]


    def empty(self) -> bool:
        """
        Returns whether the stack is empty.
        """
        return len(self.q) == 0



# Your MyStack object will be instantiated and called as such:
# obj = MyStack()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.top()
# param_4 = obj.empty()

Java

class MyStack {

    private Deque<Integer> q;

    /** Initialize your data structure here. */
    public MyStack() {
        q = new ArrayDeque<>();
    }

    /** Push element x onto stack. */
    public void push(int x) {
        q.offerLast(x);
        int n = q.size();
        while (n-- > 1) {
            q.offerLast(q.pollFirst());
        }
    }

    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        return q.pollFirst();
    }

    /** Get the top element. */
    public int top() {
        return q.peekFirst();
    }

    /** Returns whether the stack is empty. */
    public boolean empty() {
        return q.isEmpty();
    }
}

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack obj = new MyStack();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.top();
 * boolean param_4 = obj.empty();
 */

...