Skip to content

Latest commit

 

History

History
122 lines (89 loc) · 3.05 KB

File metadata and controls

122 lines (89 loc) · 3.05 KB

English Version

题目描述

设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。

请实现 KthLargest 类:

  • KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
  • int add(int val)val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。

 

示例:

输入:
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]

解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

 

提示:
  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • 最多调用 add 方法 104
  • 题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素

解法

小根堆存放最大的 k 个元素,那么堆顶就是第 k 大的元素。

Python3

class KthLargest:

    def __init__(self, k: int, nums: List[int]):
        self.q = []
        self.size = k
        for num in nums:
            self.add(num)

    def add(self, val: int) -> int:
        heapq.heappush(self.q, val)
        if len(self.q) > self.size:
            heapq.heappop(self.q)
        return self.q[0]


# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)

Java

class KthLargest {
    private PriorityQueue<Integer> q;
    private int size;

    public KthLargest(int k, int[] nums) {
        q = new PriorityQueue<>(k);
        size = k;
        for (int num : nums) {
            add(num);
        }
    }

    public int add(int val) {
        q.offer(val);
        if (q.size() > size) {
            q.poll();
        }
        return q.peek();
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

...