-
Notifications
You must be signed in to change notification settings - Fork 2
/
training.h
117 lines (96 loc) · 3.31 KB
/
training.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
* FOTOMATON. Detector de rostros de la plataforma SWAD
*
* Copyright (C) 2008 Daniel J. Calandria Hernández &
* Antonio Cañas Vargas
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __training_h
#define __training_h
#include "common.h"
#include "haar_feature.h"
#include "haar_classifier.h"
#include "boosting.h"
#include "adaboost.h"
#include "cascade.h"
#include <vector>
typedef std::vector< std::vector< int > > TrainingTable;
/*
* Construye la tabla con datos precomputados (para cada clasificador weak, los ejemplos ordenados)
*/
void ComputeTrainingTable ( TrainingTable &table, const HaarClassifierSet &weak, const TrainingSet &samples );
/*
* Entrenamiento utilizando como umbral de decision la media
* Calcula la media de los ejemplos positivos, la media de los ejemplos negativos,
* y establece la frontera de decision en la media de ambas.
*
*/
/*class TrainHaarClassifier_Mean
{
public:
REAL operator() ( HaarClassifier &classifier, const TrainingSet &input) const ;
};*/
/*
* Clasificador de minimo error
*/
/*class TrainHaarClassifier_MinErr
{
public:
REAL operator() ( HaarClassifier &classifier, const TrainingSet &input) const ;
}; */
class CascadeTrainer
{
CvMemStorage *storage;
AdaBoost ada_boost;
//Conjunto de entrenamiento y de validacion (positivo)
const TrainingSet* train_set;
const TrainingSet* val_set;
HaarClassifierSet weaks;
public:
CascadeTrainer ()
{
storage = cvCreateMemStorage (0);
}
CascadeTrainer (const HaarClassifierSet &weaks, const TrainingSet& train_set, const TrainingSet &val_set )
{
storage = cvCreateMemStorage (0);
SetWeaks (weaks);
SetTrainingSet (train_set);
SetValidationSet (val_set);
}
~CascadeTrainer ()
{
cvClearMemStorage (storage);
cvReleaseMemStorage (&storage);
}
void SetWeaks (const HaarClassifierSet &weaks);
void SetTrainingSet (const TrainingSet& train_set);
void SetValidationSet (const ValidationSet& val_set);
/*
* Añade un nuevo nodo al nivel actual
*/
REAL AddLevelNode ( CascadeClassifier& cascade, unsigned level, unsigned node );
/*
* Ajusta el umbral de la cascada para adaptarlo a ciertos parámetros
*/
REAL AdjustLevelThreshold (CascadeClassifier& cascade, unsigned level, REAL desired_tpr );
/*
* Entrena un nuevo nivel
*/
REAL TrainNewLevel (CascadeClassifier& cascade, unsigned level, unsigned nodes, REAL desired_tpr );
};
void ResampleSet (TrainingSet &set, int label, const CvMat *image, const CascadeClassifier& cascade, int levels, std::vector<unsigned>& index);
void ComputeThresholds ( const TrainingSet &set, CascadeClassifier &cascade );
#endif