-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathoneflow2onnx.py
67 lines (53 loc) · 2.17 KB
/
oneflow2onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
from os import mkdir
from oneflow_onnx.oneflow2onnx.util import convert_to_onnx_and_check
import oneflow as flow
import logging
from backbones import get_model
from utils.utils_config import get_config
import argparse
import tempfile
class ModelGraph(flow.nn.Graph):
def __init__(self, model):
super().__init__()
self.backbone = model
def build(self, x):
x = x.to("cuda")
out = self.backbone(x)
return out
def convert_func(cfg, model_path, out_path,image_size):
model_module = get_model(cfg.network, dropout=0.0,
num_features=cfg.embedding_size).to("cuda")
model_module.eval()
print(model_module)
model_graph = ModelGraph(model_module)
model_graph._compile(flow.randn(1, 3, image_size, image_size).to("cuda"))
with tempfile.TemporaryDirectory() as tmpdirname:
new_parameters = dict()
parameters = flow.load(model_path)
for key, value in parameters.items():
if "num_batches_tracked" not in key:
if key == "fc.weight":
continue
val = value
new_key = key.replace("backbone.", "")
new_parameters[new_key] = val
model_module.load_state_dict(new_parameters)
flow.save(model_module.state_dict(), tmpdirname)
convert_to_onnx_and_check(
model_graph, flow_weight_dir=tmpdirname, onnx_model_path="./", print_outlier=True)
def main(args):
logging.basicConfig(level=logging.NOTSET)
logging.info(args.model_path)
cfg = get_config(args.config)
if not os.path.exists(args.out_path):
mkdir(args.out_path)
convert_func(cfg, args.model_path, args.out_path,args.image_size)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='OneFlow ArcFace val')
parser.add_argument('config', type=str, help='py config file')
parser.add_argument('--model_path', type=str, help='model path')
parser.add_argument('--image_size', type=int,
default=112, help='input image size')
parser.add_argument('--out_path', type=str,
default="onnx_model", help='out path')