Sacred Experiment manager combines sacred and dvc to run experiments locally, on HPC clusters and across different users.
Currently sdem
works with sacred
local files, but there are plans to support mongo
experiments.
Requires python==3.9
pip install sdem
git clone git@github.com:defaultobject/sdem.git
cd sdem
pip install -e .
The full example is shown in the example
folder.
There are two ways to run a file, the first is through the sdem
cli. In The experiment folder run:
sdem --verbose run
which will sequentially run all models found in the models
folder.
Alternatively we can directly run the models file:
python m_model.py -1
sdem
provides some convenient functions to see the results of the experiments ran. To automatically create a table of results go into the metrics
folder and run
python table_of_results.py
which runs
results_df = get_ordered_table(
'../',
metrics=['train_rmse', 'test_rmse'],
group_by=[
'name',
],
results_by=[''],
combine=True,
flatten=True,
)
This will go through every sacred run, and group the metrics by name
and compute the mean and std across all experiments in this group (ie across folds). This results in
name train_rmse_score test_rmse_score
-- ------------ ------------------ -----------------
0 linear_model 0.10 $\pm$ 0.01 0.10 $\pm$ 0.03
To view the results of each fold we can simply add this to the results_by
argument
results_df = get_ordered_table(
'../',
metrics=['train_rmse', 'test_rmse'],
group_by=[
'name',
],
results_by=['fold'],
combine=True,
flatten=True,
)
which results in
name fold train_rmse_score test_rmse_score
-- ------------ ------ ------------------ -----------------
0 linear_model 0 0.11 $\pm$ nan 0.09 $\pm$ nan
1 linear_model 1 0.11 $\pm$ nan 0.06 $\pm$ nan
2 linear_model 2 0.09 $\pm$ nan 0.14 $\pm$ nan
3 linear_model 3 0.11 $\pm$ nan 0.09 $\pm$ nan
4 linear_model 4 0.10 $\pm$ nan 0.11 $\pm$ nan
As shown in predictions.py
we can load (unpacked) pickles and configs for the run experiments:
res_list, config_list = get_results_that_match_dict(
{
'fold': 0,
},
'../'
)
print(f'Number of experiments found {len(res_list)}')
This will return the (unpacked) pickles and configs of all experiments that match the passed dictionary, in this case it will return the one with fold equal to zero.
To install mongodb
on a mac see here https://docs.mongodb.com/manual/tutorial/install-mongodb-on-os-x/.
mongo
use sacred
db.createUser(
{
user: "default",
pwd: "default",
roles: [ { role: "userAdminAnyDatabase", db: "admin" } ]
}
)
pip install requirements.py
pip install -e .
SEML requires a config file:
mkdir ~/.config/seml/
and for the responses use:
username: default
password: default
port: 27017
database: sacred
host: localhost
Follow https://dvc.org/doc/user-guide/setup-google-drive-remote#using-a-custom-google-cloud-project
-
Create project here https://console.developers.google.com/
-
Open
OAuth consent screen
-
Create OAuth client Credentials
-
Enable
Google Drive API
-
Will need to authenticate on first use
dvc init
dvc remote add gremote gdrive://<folder_url_id>
dvc remote modify gremote gdrive_client_id <client ID>
dvc remote modify gremote gdrive_client_secret <client secret>
dvc remote default gremote