-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathproto.py
374 lines (292 loc) · 12.6 KB
/
proto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributions as pyd
import copy
import math
import utils
import hydra
import kornia
class Encoder(nn.Module):
def __init__(self, obs_shape, proj_dim):
super().__init__()
assert len(obs_shape) == 3
self.conv = nn.Sequential(nn.Conv2d(obs_shape[0], 32, 3, stride=2),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
nn.ReLU())
self.repr_dim = 32 * 35 * 35
self.projector = nn.Linear(self.repr_dim, proj_dim)
self.apply(utils.weight_init)
def encode(self, obs):
obs = obs / 255.
h = self.conv(obs)
h = h.view(h.shape[0], -1)
return h
def forward(self, obs):
h = self.encode(obs)
z = self.projector(h)
return z
class Actor(nn.Module):
def __init__(self, repr_dim, feature_dim, action_shape, hidden_dim,
hidden_depth, log_std_bounds):
super().__init__()
self.log_std_bounds = log_std_bounds
self.pre_fc = nn.Sequential(nn.Linear(repr_dim, feature_dim),
nn.LayerNorm(feature_dim))
self.fc = utils.mlp(feature_dim, hidden_dim, 2 * action_shape[0],
hidden_depth)
self.apply(utils.weight_init)
def forward(self, obs):
h = self.pre_fc(obs)
mu, log_std = self.fc(h).chunk(2, dim=-1)
# constrain log_std inside [log_std_min, log_std_max]
log_std = torch.tanh(log_std)
log_std_min, log_std_max = self.log_std_bounds
log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std +
1)
std = log_std.exp()
dist = utils.SquashedNormal(mu, std)
return dist
class Critic(nn.Module):
def __init__(self, repr_dim, feature_dim, action_shape, hidden_dim,
hidden_depth):
super().__init__()
self.pre_fc = nn.Sequential(nn.Linear(repr_dim, feature_dim),
nn.LayerNorm(feature_dim))
self.Q1 = utils.mlp(feature_dim + action_shape[0], hidden_dim, 1,
hidden_depth)
self.Q2 = utils.mlp(feature_dim + action_shape[0], hidden_dim, 1,
hidden_depth)
self.apply(utils.weight_init)
def forward(self, obs, action):
assert obs.size(0) == action.size(0)
h = self.pre_fc(obs)
h_action = torch.cat([h, action], dim=-1)
q1 = self.Q1(h_action)
q2 = self.Q2(h_action)
return q1, q2
class Proto(nn.Module):
def __init__(self, proj_dim, pred_dim, T, num_protos, num_iters, topk,
queue_size):
super().__init__()
self.predictor = nn.Sequential(nn.Linear(proj_dim,
pred_dim), nn.ReLU(),
nn.Linear(pred_dim, proj_dim))
self.num_iters = 3
self.T = T
self.topk = topk
self.num_protos = num_protos
self.protos = nn.Linear(proj_dim, num_protos, bias=False)
# candidate queue
self.register_buffer('queue', torch.zeros(queue_size, proj_dim))
self.register_buffer('queue_ptr', torch.zeros(1, dtype=torch.long))
self.outputs = dict()
self.apply(utils.weight_init)
def forward(self, s, t):
# normalize prototypes
C = self.protos.weight.data.clone()
C = F.normalize(C, dim=1, p=2)
self.protos.weight.data.copy_(C)
s = self.predictor(s)
s = F.normalize(s, dim=1, p=2)
t = F.normalize(t, dim=1, p=2)
scores_s = self.protos(s)
log_p_s = F.log_softmax(scores_s / self.T, dim=1)
with torch.no_grad():
scores_t = self.protos(t)
q_t = self.sinkhorn(scores_t)
loss = -(q_t * log_p_s).sum(dim=1).mean()
return loss
def compute_reward(self, z):
B = z.shape[0]
Q = self.queue.shape[0]
assert Q % self.num_protos == 0
# normalize
C = self.protos.weight.data.clone()
C = F.normalize(C, dim=1, p=2)
self.protos.weight.data.copy_(C)
z = F.normalize(z, dim=1, p=2)
scores = self.protos(z).T
p = F.softmax(scores, dim=1)
idx = pyd.Categorical(p).sample()
# enqueue
ptr = int(self.queue_ptr[0])
self.queue[ptr:ptr + self.num_protos] = z[idx]
self.queue_ptr[0] = (ptr + self.num_protos) % Q
# compute distances
z_to_q = torch.norm(z[:, None, :] - self.queue[None, :, :], dim=2, p=2)
d, _ = torch.topk(z_to_q, self.topk, dim=1, largest=False)
reward = d[:, -1:]
return reward
def sinkhorn(self, scores):
def remove_infs(x):
m = x[torch.isfinite(x)].max().item()
x[torch.isinf(x)] = m
return x
Q = scores / self.T
Q -= Q.max()
Q = torch.exp(Q).T
Q = remove_infs(Q)
Q /= Q.sum()
r = torch.ones(Q.shape[0], device=Q.device) / Q.shape[0]
c = torch.ones(Q.shape[1], device=Q.device) / Q.shape[1]
for it in range(self.num_iters):
u = Q.sum(dim=1)
u = remove_infs(r / u)
Q *= u.unsqueeze(dim=1)
Q *= (c / Q.sum(dim=0)).unsqueeze(dim=0)
Q = Q / Q.sum(dim=0, keepdim=True)
return Q.T
class ProtoAgent(object):
def __init__(self, obs_shape, action_shape, action_range, device,
encoder_cfg, critic_cfg, actor_cfg, proto_cfg, discount,
init_temperature, lr, actor_update_frequency,
critic_target_tau, critic_target_update_frequency,
encoder_target_tau, encoder_update_frequency, batch_size,
task_agnostic, intr_coef, num_seed_steps):
self.action_range = action_range
self.device = device
self.discount = discount
self.actor_update_frequency = actor_update_frequency
self.critic_target_tau = critic_target_tau
self.critic_target_update_frequency = critic_target_update_frequency
self.encoder_target_tau = encoder_target_tau
self.encoder_update_frequency = encoder_update_frequency
self.batch_size = batch_size
self.task_agnostic = task_agnostic
self.intr_coef = intr_coef
self.num_seed_steps = num_seed_steps
self.lr = lr
self.encoder = hydra.utils.instantiate(encoder_cfg).to(self.device)
self.encoder_target = hydra.utils.instantiate(encoder_cfg).to(
self.device)
self.encoder_target.load_state_dict(self.encoder.state_dict())
actor_cfg.params.repr_dim = self.encoder.repr_dim
critic_cfg.params.repr_dim = self.encoder.repr_dim
self.actor = hydra.utils.instantiate(actor_cfg).to(self.device)
self.critic = hydra.utils.instantiate(critic_cfg).to(self.device)
self.critic_target = hydra.utils.instantiate(critic_cfg).to(
self.device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.proto = hydra.utils.instantiate(proto_cfg).to(self.device)
self.log_alpha = torch.tensor(np.log(init_temperature)).to(device)
self.log_alpha.requires_grad = True
self.aug = nn.Sequential(nn.ReplicationPad2d(4),
kornia.augmentation.RandomCrop((84, 84)))
# set target entropy to -|A|
self.target_entropy = -action_shape[0]
# optimizers
self.init_optimizers(lr)
self.train()
self.critic_target.train()
self.encoder_target.train()
def init_optimizers(self, lr):
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=lr)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(),
lr=lr)
self.proto_optimizer = torch.optim.Adam(utils.chain(
self.encoder.parameters(), self.proto.parameters()),
lr=lr)
self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=lr)
def assign_modules_from(self, other):
self.encoder = other.encoder
self.encoder_target = other.encoder_target
self.proto = other.proto
self.actor = other.actor
# init opts
self.init_optimizers(self.lr)
def train(self, training=True):
self.training = training
self.actor.train(training)
self.critic.train(training)
self.encoder.train(training)
self.proto.train(training)
@property
def alpha(self):
return self.log_alpha.exp()
def act(self, obs, sample=False):
obs = torch.FloatTensor(obs).to(self.device)
obs = obs.unsqueeze(0)
obs = self.encoder.encode(obs)
dist = self.actor(obs)
action = dist.sample() if sample else dist.mean
action = action.clamp(*self.action_range)
assert action.ndim == 2 and action.shape[0] == 1
return utils.to_np(action[0])
def update_critic(self, obs, action, reward, next_obs, discount, step):
with torch.no_grad():
dist = self.actor(next_obs)
next_action = dist.rsample()
log_prob = dist.log_prob(next_action).sum(-1, keepdim=True)
target_Q1, target_Q2 = self.critic_target(next_obs, next_action)
target_V = torch.min(target_Q1,
target_Q2) - self.alpha.detach() * log_prob
target_Q = reward + (discount * target_V)
# get current Q estimates
Q1, Q2 = self.critic(obs, action)
critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q)
# optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
def update_actor_and_alpha(self, obs, step):
dist = self.actor(obs)
action = dist.rsample()
log_prob = dist.log_prob(action).sum(-1, keepdim=True)
actor_Q1, actor_Q2 = self.critic(obs, action)
actor_Q = torch.min(actor_Q1, actor_Q2)
actor_loss = (self.alpha.detach() * log_prob - actor_Q).mean()
# optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
self.log_alpha_optimizer.zero_grad()
alpha_loss = (self.alpha *
(-log_prob - self.target_entropy).detach()).mean()
alpha_loss.backward()
self.log_alpha_optimizer.step()
def update_repr(self, obs, next_obs, step):
z = self.encoder(obs)
with torch.no_grad():
next_z = self.encoder_target(next_obs)
loss = self.proto(z, next_z)
self.proto_optimizer.zero_grad()
loss.backward()
self.proto_optimizer.step()
def compute_reward(self, next_obs, step):
with torch.no_grad():
y = self.encoder(next_obs)
reward = self.proto.compute_reward(y)
return reward
def update(self, replay_buffer, step):
if len(replay_buffer) < self.num_seed_steps:
return
obs, action, extr_reward, next_obs, discount = replay_buffer.sample(
self.batch_size, self.discount)
obs = self.aug(obs)
next_obs = self.aug(next_obs)
# train representation only during the task-agnostic phase
if self.task_agnostic:
if step % self.encoder_update_frequency == 0:
self.update_repr(obs, next_obs, step)
utils.soft_update_params(self.encoder, self.encoder_target,
self.encoder_target_tau)
with torch.no_grad():
intr_reward = self.compute_reward(next_obs, step)
if self.task_agnostic:
reward = intr_reward
else:
reward = extr_reward + self.intr_coef * intr_reward
# decouple representation
with torch.no_grad():
obs = self.encoder.encode(obs)
next_obs = self.encoder.encode(next_obs)
self.update_critic(obs, action, reward, next_obs, discount, step)
if step % self.actor_update_frequency == 0:
self.update_actor_and_alpha(obs, step)
if step % self.critic_target_update_frequency == 0:
utils.soft_update_params(self.critic, self.critic_target,
self.critic_target_tau)