-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
92 lines (82 loc) · 3.07 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
import torch.nn as nn
# config
architecture_config = [
#Tuple: (kernel_size, number of filters, strides, padding)
(7, 64, 2, 3),
#"M" = Max Pool Layer
"M",
(3, 192, 1, 1),
"M",
(1, 128, 1, 0),
(3, 256, 1, 1),
(1, 256, 1, 0),
(3, 512, 1, 1),
"M",
#List: [(tuple), (tuple), how many times to repeat]
[(1, 256, 1, 0), (3, 512, 1, 1), 4],
(1, 512, 1, 0),
(3, 1024, 1, 1),
"M",
[(1, 512, 1, 0), (3, 1024, 1, 1), 2],
(3, 1024, 1, 1),
(3, 1024, 2, 1),
(3, 1024, 1, 1),
(3, 1024, 1, 1),
#Doesnt include fc layers
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(CNNBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.batchnorm = nn.BatchNorm2d(out_channels)
self.leakyrelu = nn.LeakyReLU(0.1)
def forward(self, x):
# x = self.conv(x)
# x = self.batchnorm(x)
# x = self.leakyrelu(x)
# return x
return self.leakyrelu(self.batchnorm(self.conv(x)))
class YoloV1(nn.Module):
def __init__(self, in_channels=3, **kwargs):
super(YoloV1, self).__init__()
self.architecture = architecture_config
self.in_channels = in_channels
self.darknet = self._create_conv_layers(self.architecture)
self.fcs = self._create_fcs(**kwargs)
def forward(self, x):
x = self.darknet(x)
return self.fcs(torch.flatten(x, start_dim=1))
def _create_conv_layers(self, architecture):
layers = []
in_channels = self.in_channels
for x in architecture:
if type(x) == tuple:
layers += [CNNBlock(in_channels, x[1], kernel_size=x[0], stride=x[2], padding=x[3])]
in_channels = x[1]
elif type(x) == str:
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif type(x) == list:
conv1 = x[0] #Tuple
conv2 = x[1] #Tuple
repeats = x[2] #Int
for _ in range(repeats):
layers += [CNNBlock(in_channels, conv1[1], kernel_size=conv1[0], stride=conv1[2], padding=conv1[3])]
layers += [CNNBlock(conv1[1], conv2[1], kernel_size=conv2[0], stride=conv2[2], padding=conv2[3])]
in_channels = conv2[1]
return nn.Sequential(*layers)
def _create_fcs(self, split_size, num_boxes, num_classes):
S, B, C = split_size, num_boxes, num_classes
return nn.Sequential(nn.Flatten(),
nn.Linear(1024 * S * S, 496),
nn.Dropout(0.0),
nn.LeakyReLU(0.1),
nn.Linear(496, S * S * (C + B * 5))) # (S,S,30) - (C + B*5) = 30
# S - split_size
# B - num_boxes
# C - num_classes
# def test(S=7,B=2,C=20):
# model = YoloV1(split_size=S, num_boxes=B,num_classes=C)
# x = torch.randn((2,3,448,448))
# print(model(x).shape)
# test()