-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_trainer.py
37 lines (30 loc) · 1.38 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from csv import writer
import os
import librosa
import numpy as np
def append_list_as_row(file_name, list_of_elem):
# Open file in append mode
with open(file_name, 'a+', newline='') as write_obj:
# Create a writer object from csv module
csv_writer = writer(write_obj)
# Add contents of list as last row in the csv file
csv_writer.writerow(list_of_elem)
for count, filename in enumerate(os.listdir('pos')): # we run the same for neagtive i.e change pos to neg, "pos" and "neg" are folder names containg positive and negative samples
audio = "pos/"+filename
print(audio)
y, sr = librosa.load(audio, mono=True, duration=1)
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr)
spec_cent = librosa.feature.spectral_centroid(y=y, sr=sr)
spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr)
zcr = librosa.feature.zero_crossing_rate(y)
mfcc = librosa.feature.mfcc(y=y, sr=sr)
chroma_stft = np.mean(chroma_stft)
spec_cent = np.mean(spec_cent)
spec_bw = np.mean(spec_bw)
rolloff = np.mean(rolloff)
zcr = np.mean(zcr)
mfcc = np.mean(mfcc)
contents = [chroma_stft,spec_cent,spec_bw,rolloff,zcr,mfcc,"positive"]
append_list_as_row('dataset.csv', contents)
print(str(count)+ "Done")