Skip to content

Latest commit

 

History

History
72 lines (56 loc) · 2.05 KB

File metadata and controls

72 lines (56 loc) · 2.05 KB

Storyboard Automation

This project aims to develop a machine learning framework to automate the conversion of textual advertisement descriptions into visually compelling storyboards. This process enhances creativity and efficiency in digital advertising campaigns.

Project Structure

storyboard/
│
├── data/ # Data files
│ ├── raw/ # Raw data
│ └── processed/ # Processed data
│
├── notebooks/ # Jupyter notebooks for exploration and analysis
│ └── EDA.ipynb
│
├── src/ # Source code
│ ├── init.py # Makes src a module
│ ├── data_loader.py # Code for loading and processing data
│ ├── models.py # Code for defining ML models
│ ├── train.py # Code for training models
│ ├── evaluate.py # Code for evaluating models
│ └── utils.py # Utility functions
│
├── tests/ # Unit tests
│ ├── init.py
│ └── test_data_loader.py
│ └── test_models.py
│
├── venv/ # Virtual environment directory
│
├── .gitignore # Git ignore file
├── README.md # Project description
└── requirements.txt # List of required packages

Getting Started

  1. Clone the repository:

    git clone https://github.com/dev-abuke/Automated_Ad_Storyboard_Synthesis.git
  2. Navigate to the project directory:

    cd Automated_Ad_Storyboard_Synthesis
  3. Set up the virtual environment:

    python3 -m venv venv
    source venv/bin/activate
  4. Install the dependencies:

    pip install -r requirements.txt

Work Plan

  • Implement more advanced image segmentation models.
  • Integrate additional text analysis techniques.
  • Develop a more sophisticated evaluation framework.
  • Optimize the performance of the ML models.
  • Expand the dataset with more diverse advertisement examples.

License

This project is licensed under the MIT License. See the LICENSE file for details.