-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMissforestNumericAndCategoricalfinal3.m
225 lines (190 loc) · 7.75 KB
/
MissforestNumericAndCategoricalfinal3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
clc;
close all;
clear;
%%
% X an n×p table
opts = detectImportOptions('AutoData.csv','NumHeaderLines',0);
X_original = readtable('AutoData.csv',opts);
varNames = X_original.Properties.VariableNames;
% n = q
ratio = [8 2 1 0.5];
ind = 3;
q = size(X_original,2);
n = ratio(ind)*q;
X_true = X_original(1:n,1:q);
varNames = X_true.Properties.VariableNames;
% Extract numerical features
array_numeric = varfun(@isnumeric,X_true,'output','uniform');
index_notnumeric = find(array_numeric==0);
X_numeric = removevars(X_true,index_notnumeric);
varNames_numeric = X_numeric.Properties.VariableNames;
% Extract text features
array_numeric = varfun(@isnumeric,X_true,'output','uniform');
array_datetime = varfun(@isdatetime,X_true,'output','uniform');
index_numeric = find(array_numeric==1);
index_datetime = find(array_datetime==1);
index_nottext = [index_numeric index_datetime];
X_text = removevars(X_true,index_nottext);
varNames_text = X_text.Properties.VariableNames;
% Extract numerical indices and text indices
index_numeric = find(array_numeric==1);
index_text = find(array_numeric==0);
% Data Normalization
X_numeric_array = table2array(X_numeric);
indices_nonnan = find(isnan(X_numeric_array)==0);
Y = X_numeric_array;
Y(indices_nonnan) = (X_numeric_array(indices_nonnan) - min(X_numeric_array(indices_nonnan))) / ( max(X_numeric_array(indices_nonnan)) - min(X_numeric_array(indices_nonnan)));
X_updated = array2table(Y);
% Displays the original table with column names
for i = 1:size(X_updated,2)
X_true(:,index_numeric(i)) = X_updated(:,i);
end
%%
% percentage of missing values
percentage_missing = {};
% normalized root squared mean error
NRSME = {};
sd_NRSME = {};
% percentage of falsely classified entries
PFC = {};
sd_PFC = {};
for p = 1:8
for run = 1:5
X1 = ones(size(X_true));
matrix_size = numel(X1);
missingNumber = round(p*0.1*matrix_size);
X1(randperm(matrix_size, missingNumber))= missing;
X = X_true;
for i = 1:length(index_numeric)
indices = find(isnan(X1(:,index_numeric(i)))==1);
for k = 1:length(indices)
X{indices(k),index_numeric(i)} = NaN;
end
end
for i2 = 1:length(index_text)
indices2 = find(isnan(X1(:,index_text(i2)))==1);
for k2 = 1:length(indices2)
X{indices2(k2),index_text(i2)} = {''};
end
end
percentage_missing{p} = round((length(find(ismissing(X) == 1))/numel(X))*100);
% Stopping criterion gamma
diff_old = 10^15;
diff_new = 10^12;
% Make initial guess for missing values
X_initialguess = fillmissing(X,'nearest');
% k = vector of sorted indices of columns in X w.r.t. increasing amount of missing values
missing1 = ismissing(X);
m = zeros(1,size(X,2));
indexMissing = {};
indexObserved = {};
for i=1:size(X,2)
indexMissing{i} = find(missing1(:,i)==1);
indexObserved{i} = find(missing1(:,i)==0);
m(i) = length(find(missing1(:,i)==1));
end
m1 = m';
index1=1:size(X,2);
t = table(index1',m1);
t_sorted = sortrows(t,'m1');
k = t_sorted{:,1};
% while not gamma do
% Initialize iteration
iteration = 1;
Delta_F = {};
while diff_new < diff_old
diff_old = diff_new;
% Ximpold = store previously imputed matrix
X_oldimp = X_initialguess;
X_old = X_initialguess;
% for s in k do
for i = 1:length(k)
s = k(i);
if m1(s)~=0
y_obs = X_old(indexObserved{s},s);
x_obs = X_old(indexObserved{s},:);
x_obs(:,s) = [];
y_misold = X_old(indexMissing{s},s);
x_mis = X_old(indexMissing{s},:);
x_mis(:,s) = [];
% Fit a random forest: y_obs(s)~x_obs(s)
NumTrees = 100;
if any(varNames_numeric == string(X_old.Properties.VariableNames{s})) == 1
Mdl = TreeBagger(NumTrees,x_obs,y_obs,'Method','regression');
else
Mdl = TreeBagger(NumTrees,x_obs,y_obs,'Method','classification');
end
% Predict y_mis(s) using x_mis(s)
y_misnew = predict(Mdl,x_mis);
% Ximpnew = update imputed matrix, using predicted y(s)mis
X_newimp = X_old;
X_newimp{indexMissing{s},s} = y_misnew;
% Initialize X_old again
X_old = X_newimp;
end
end
% update gamma
Delta_N = sum(sum((X_newimp{:,index_numeric} - X_oldimp{:,index_numeric}).^2))/sum(sum((X_newimp{:,index_numeric}).^2));
I = 0;
for j = 1:length(index_text)
j_text = index_text(j);
for i = 1:size(X,1)
if isequal(X_newimp{i,j_text}, X_oldimp{i,j_text}) == 0
I = I+1;
end
end
end
Delta_F_denominator = sum(t{index_text,2});
if Delta_F_denominator ~= 0
Delta_F{iteration} = I/Delta_F_denominator;
else
Delta_F{iteration} = 0;
end
diff_new = Delta_N + Delta_F{iteration};
% Initial guess changes
X_initialguess = X_newimp;
% Iteration increases by 1
iteration = iteration + 1;
end
% return the imputed matrix Ximp
X_imputed = X_oldimp;
NRSME1(run) = sqrt(mean((X_true{:,index_numeric} - X_imputed{:,index_numeric}).^2)/var(X_true{:,index_numeric}));
I = 0;
for j = 1:length(index_text)
j_text = index_text(j);
for i = 1:size(X,1)
if isequal(X_imputed{i,j_text}, X_true{i,j_text}) == 0
I = I+1;
end
end
end
PFC1(run) = I/numel(X_text);
end
NRSME{p} = mean(NRSME1);
sd_NRSME{p} = std(NRSME1);
PFC{p} = mean(PFC1);
sd_PFC{p} = std(PFC1);
end
%%
% Error plot for continuous data
errorbar(1:1:8,str2double(string(NRSME)),str2double(string(sd_NRSME)),'-k','MarkerSize',7,...
'Marker','*','MarkerEdgeColor','black','MarkerFaceColor','black','LineWidth',1)
xlim([1 8])
xticks([1 2 3 4 5 6 7 8])
xticklabels({'10%','20%','30%','40%','50%','60%','70%','80%'})
title({'MissForest imputer method on numerical and categorical data';'24 Rows, 24 Columns';'15 Numeric features, 9 Text features'})
xlabel('Percentage of missing data')
ylabel('NRSME')
saveas(gcf,'fig3_NRSME.png')
hold off
%%
% Error plot for categorical data
errorbar(1:1:8,str2double(string(PFC)),str2double(string(sd_PFC)),'-k','MarkerSize',7,...
'Marker','*','MarkerEdgeColor','black','MarkerFaceColor','black','LineWidth',1)
xlim([1 8])
xticks([1 2 3 4 5 6 7 8])
xticklabels({'10%','20%','30%','40%','50%','60%','70%','80%'})
title({'MissForest imputer method on numerical and categorical data';'24 Rows, 24 Columns';'15 Numeric features, 9 Text features'})
xlabel('Percentage of missing data')
ylabel('PEC')
saveas(gcf,'fig3_PFC.png')