-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_utils.py
279 lines (236 loc) · 9.7 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import random
import torch
import torch.nn as nn
import torchvision.utils as vutils
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import CIFAR10, MNIST, LSUN, ImageFolder
from GANs import dc_G, dc_D, \
GoodGenerator, GoodDiscriminator, GoodDiscriminatorbn, GoodDiscriminatord, \
DC_generator, DC_discriminator, \
ResNet32Discriminator, ResNet32Generator, DC_discriminatorW, GoodSNDiscriminator, \
dcD32, dcG32, DCGAN_G, DCGAN_D, ResNetDiscriminator, ResNetGenerator
mnist_tf = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def accumulate(model1, model2, decay=0.999):
par1 = dict(model1.named_parameters())
par2 = dict(model2.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)
def make_noise(batch, latent_dim, n_noise, device):
if n_noise == 1:
return torch.randn(batch, latent_dim, device=device)
noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0)
return noises
def mixing_noise(batch, latent_dim, prob, device):
if prob > 0 and random.random() < prob:
return make_noise(batch, latent_dim, 2, device)
else:
return [make_noise(batch, latent_dim, 1, device)]
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def set_grad_none(model, targets):
for n, p in model.named_parameters():
if n in targets:
p.grad = None
def generate_data(model_weight, path, z_dim=96, device='cpu'):
chk = torch.load(model_weight)
print('load from %s' % model_weight)
dataset = get_data(dataname='MNIST', path='../datas/mnist')
fixed_z = torch.randn((500, z_dim), device=device)
fixed_D = dc_D().to(device)
fixed_G = dc_G(z_dim=z_dim).to(device)
fixed_D.load_state_dict(chk['D'])
fixed_G.load_state_dict(chk['G'])
real_loader = DataLoader(dataset=dataset, batch_size=500, shuffle=True,
num_workers=4)
real_set = next(iter(real_loader))
real_set = real_set[0].to(device)
with torch.no_grad():
fake_set = fixed_G(fixed_z)
fixed_real_d = fixed_D(real_set)
fixed_fake_d = fixed_D(fake_set)
fixed_vec = torch.cat([fixed_real_d, fixed_fake_d])
if not os.path.exists('figs/select'):
os.makedirs('figs/select')
torch.save({'real_set': real_set,
'fake_set': fake_set,
'real_d': fixed_real_d,
'fake_d': fixed_fake_d,
'pred_vec': fixed_vec}, path)
for i in range(5):
j = i * 100
vutils.save_image(real_set[j: j + 100], 'figs/select/real_set_%d.png' % i, nrow=10, normalize=True)
vutils.save_image(fake_set[j: j + 100], 'figs/select/fake_set_%d.png' % i, nrow=10, normalize=True)
class icrScheduler(object):
def __init__(self, optimizer, milestone):
self.optim = optimizer
self.milestone = milestone
def step(self, epoch):
e_key = str(epoch)
if e_key in self.milestone:
self.optim.set_state({'lr': self.milestone[e_key][0],
'alpha': self.milestone[e_key][1]})
class lr_scheduler(object):
def __init__(self, optimizer, milestone):
self.optim = optimizer
self.milestone = milestone
def step(self, epoch, gamma=10):
e_key = str(epoch)
if e_key in self.milestone:
self.optim.set_lr(lr_max=self.milestone[e_key][0],
lr_min=self.milestone[e_key][1])
def get_diff(net, model_vec):
current_model = torch.cat([p.contiguous().view(-1) for p in net.parameters()]).detach()
weight_vec = current_model - model_vec
vom = torch.norm(weight_vec, p=2)
return vom
def get_model(model_name, z_dim, configs=None):
if model_name == 'dc':
D = GoodDiscriminator()
G = GoodGenerator()
elif model_name == 'dcBN':
D = GoodDiscriminatorbn()
G = GoodGenerator()
elif model_name == 'dcD':
D = GoodDiscriminatord()
G = GoodGenerator()
elif model_name == 'DCGAN':
D = DC_discriminator()
G = DC_generator(z_dim=z_dim)
elif model_name == 'Resnet32':
D = ResNet32Discriminator(n_in=3, num_filters=128, batchnorm=True)
G = ResNet32Generator(z_dim=z_dim, num_filters=128, batchnorm=True)
elif model_name == 'Resnet':
D = ResNetDiscriminator(in_channel=configs['image_channel'],
insize=configs['image_size'],
num_filters=configs['feature_num'],
batchnorm=configs['batchnorm_d'])
G = ResNetGenerator(z_dim=z_dim,
outsize=configs['image_size'],
num_filters=configs['feature_num'],
batchnorm=configs['batchnorm_g'])
elif model_name == 'ResnetWBN':
D = ResNet32Discriminator(n_in=3, num_filters=128, batchnorm=False)
G = ResNet32Generator(z_dim=z_dim, num_filters=128, batchnorm=True)
elif model_name == 'DCGAN-WBN':
D = DC_discriminatorW()
G = DC_generator(z_dim=z_dim)
elif model_name == 'dcSN':
D = GoodSNDiscriminator()
G = GoodGenerator()
elif model_name == 'mnist':
D = dc_D()
G = dc_G(z_dim=z_dim)
elif model_name == 'dc32':
D =dcD32()
G =dcG32(z_dim=z_dim)
elif model_name == 'DCGANs':
D = DCGAN_D(insize=configs['image_size'],
channel_num=configs['image_channel'],
feature_num=configs['feature_num'],
n_extra_layers=configs['n_extra_layers'])
G = DCGAN_G(outsize=configs['image_size'],
z_dim=z_dim,
nc=configs['image_channel'],
feature_num=configs['feature_num'],
n_extra_layers=configs['n_extra_layers'])
else:
print('No matching result of :')
print(model_name)
return D, G
def get_data(dataname, path, img_size=64):
if dataname == 'CIFAR10':
dataset = CIFAR10(path, train=True,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]),
download=True)
print('CIFAR10')
elif dataname == 'MNIST':
dataset = MNIST(path, train=True,
transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]),
download=True)
print('MNIST')
elif dataname == 'LSUN-dining':
dataset = LSUN(path, classes=['dining_room_train'], transform=transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
print('LSUN-dining')
elif dataname == 'LSUN-bedroom':
dataset = LSUN(path, classes=['bedroom_train'], transform=transforms.Compose([
transforms.Resize(img_size),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]))
print('LSUN-bedroom')
elif dataname == 'CelebA':
dataset = ImageFolder(root=path,
transform=transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
return dataset
def save_checkpoint(path, name, D, G, optimizer=None, g_optimizer=None):
chk_name = 'checkpoints/%s/' % path
if not os.path.exists(chk_name):
os.makedirs(chk_name)
try:
d_state_dict = D.module.state_dict()
g_state_dict = G.module.state_dict()
except AttributeError:
d_state_dict = D.state_dict()
g_state_dict = G.state_dict()
if optimizer is not None:
optim_dict = optimizer.state_dict()
else:
optim_dict = 0
if g_optimizer is not None:
g_optim_dict = g_optimizer.state_dict()
torch.save({
'D': d_state_dict,
'G': g_state_dict,
'd_optim': optim_dict,
'g_optim': g_optim_dict,
}, chk_name + name)
else:
torch.save({
'D': d_state_dict,
'G': g_state_dict,
'optim': optim_dict
}, chk_name + name)
print('model is saved at %s' % chk_name + name)
def detransform(x):
return (x + 1.0) / 2.0
def weights_init_d(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.01)
def weights_init_g(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.01)
def model_init(D=None, G=None, init_d=False, init_g=False):
if D is not None and init_d:
D.apply(weights_init_d)
print('initial D with normal')
if G is not None and init_g:
G.apply(weights_init_g)
print('initial G with normal')
def select_n_random(data, n=100):
"""
Selects n random data points and their corresponding labels from a dataset
"""
perm = torch.randperm(len(data))
return data[perm][:n]