forked from jonfanlab/GLOnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
169 lines (135 loc) · 5.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""General utility functions"""
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import gridspec
import os
import json
import logging
import csv
import scipy.io as io
import torch
import numpy as np
class Params():
"""Class that loads hyperparameters from a json file.
Example:
```
params = Params(json_path)
print(params.learning_rate)
params.learning_rate = 0.5 # change the value of learning_rate in params
```
"""
def __init__(self, json_path):
self.update(json_path)
def save(self, json_path):
"""Saves parameters to json file"""
with open(json_path, 'w') as f:
json.dump(self.__dict__, f, indent=4)
def update(self, json_path):
"""Loads parameters from json file"""
with open(json_path) as f:
params = json.load(f)
self.__dict__.update(params)
@property
def dict(self):
"""Gives dict-like access to Params instance by `params.dict['learning_rate']`"""
return self.__dict__
def set_logger(log_path):
"""Sets the logger to log info in terminal and file `log_path`.
In general, it is useful to have a logger so that every output to the terminal is saved
in a permanent file. Here we save it to `model_dir/train.log`.
Example:
```
logging.info("Starting training...")
```
Args:
log_path: (string) where to log
"""
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if not logger.handlers:
# Logging to a file
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(logging.Formatter('%(asctime)s:%(levelname)s: %(message)s'))
logger.addHandler(file_handler)
# Logging to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(stream_handler)
def save_dict_to_json(d, json_path):
"""Saves dict of floats in json file
Args:
d: (dict) of float-castable values (np.float, int, float, etc.)
json_path: (string) path to json file
"""
with open(json_path, 'w') as f:
# We need to convert the values to float for json (it doesn't accept np.array, np.float, )
d = {k: float(v) for k, v in d.items()}
json.dump(d, f, indent=4)
def row_csv2dict(csv_file):
dict_club={}
with open(csv_file)as f:
reader=csv.reader(f,delimiter=',')
for row in reader:
dict_club[(row[0],row[1])]=row[2]
return dict_club
def save_checkpoint(state, checkpoint):
"""Saves model and training parameters at checkpoint + 'last.pth.tar'. If is_best==True, also saves
checkpoint + 'best.pth.tar'
Args:
state: (dict) contains model's state_dict, may contain other keys such as epoch, optimizer state_dict
is_best: (bool) True if it is the best model seen till now
checkpoint: (string) folder where parameters are to be saved
"""
filepath = os.path.join(checkpoint, 'model.pth.tar')
if not os.path.exists(checkpoint):
print("Checkpoint Directory does not exist! Making directory {}".format(checkpoint))
os.mkdir(checkpoint)
else:
print("Checkpoint Directory exists! ")
torch.save(state, filepath)
def load_checkpoint(checkpoint, model, optimizer=None, scheduler=None):
"""Loads model parameters (state_dict) from file_path. If optimizer is provided, loads state_dict of
optimizer assuming it is present in checkpoint.
Args:
checkpoint: (string) filename which needs to be loaded
model: (torch.nn.Module) model for which the parameters are loaded
optimizer: (torch.optim) optional: resume optimizer from checkpoint
"""
if not os.path.exists(checkpoint):
raise("File doesn't exist {}".format(checkpoint))
checkpoint = torch.load(checkpoint)
model.load_state_dict(checkpoint['gen_state_dict'])
if optimizer:
optimizer.load_state_dict(checkpoint['optim_state_dict'])
if scheduler:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
return checkpoint
def plot_loss_history(loss_history, params):
effs_mean_history, diversity_history, binarization_history = loss_history
iterations = [i*params.plot_iter for i in range(len(effs_mean_history))]
plt.figure()
plt.plot(iterations, effs_mean_history)
plt.plot(iterations, diversity_history)
plt.plot(iterations, binarization_history)
plt.xlabel('iteration')
plt.legend(('Average Efficiency', 'Pattern diversity', 'Binarizaion'))
plt.axis([0, len(effs_mean_history)*params.plot_iter, 0, 1.05])
plt.savefig(params.output_dir + '/figures/Train_history.png')
history_path = os.path.join(params.output_dir,'history.mat')
io.savemat(history_path, mdict={'effs_mean_history' :np.asarray(effs_mean_history),
'diversity_history' :np.asarray(diversity_history),
'binarization_history':np.asarray(binarization_history)})
def plot_histogram(Effs, Iter, fig_path):
ax = plt.figure()
bins = [i*5 for i in range(21)]
plt.hist(Effs*100, bins, facecolor='blue', alpha=0.5)
plt.xlim(0, 100)
plt.ylim(0, 50)
plt.yticks([])
plt.xticks(fontsize=12)
#plt.yticks(fontsize=20)
plt.xlabel('Deflection efficiency (%)', fontsize=12)
plt.title('Iteration {}'.format(Iter), fontsize=16)
plt.savefig(fig_path, dpi=300)
plt.close()