-
Notifications
You must be signed in to change notification settings - Fork 119
/
environment.py
executable file
·190 lines (159 loc) · 6.46 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from __future__ import division
import gym
import numpy as np
from collections import deque
from gym.spaces.box import Box
#from skimage.color import rgb2gray
from cv2 import resize, INTER_AREA
#from skimage.transform import resize
#from scipy.misc import imresize as resize
import random
def atari_env(env_id, env_conf, args):
env = gym.make(env_id)
if 'NoFrameskip' in env_id:
assert 'NoFrameskip' in env.spec.id
env._max_episode_steps = args.max_episode_length * args.skip_rate
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=args.skip_rate)
else:
env._max_episode_steps = args.max_episode_length
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env._max_episode_steps = args.max_episode_length
env = AtariRescale(env, env_conf)
env = NormalizedEnv(env)
return env
def process_frame(frame, conf):
frame = frame[conf["crop1"]:conf["crop2"] + 160, :160]
# frame = frame.mean(2)
# frame = frame.astype(np.float32)
# frame *= (1.0 / 255.0)
# frame = resize(frame, (80, conf["dimension2"]), interpolation=INTER_AREA)
frame = resize(frame, (80, 80), interpolation=INTER_AREA)
frame = (0.2989 * frame[:,:,0] + 0.587 * frame[:,:,1] + 0.114 * frame[:,:,2])
frame = np.reshape(frame, [1, 80, 80]).astype(np.float32)
return frame
class AtariRescale(gym.ObservationWrapper):
def __init__(self, env, env_conf):
gym.ObservationWrapper.__init__(self, env)
self.observation_space = Box(0.0, 1.0, [1, 80, 80], dtype=np.uint8)
self.conf = env_conf
def observation(self, observation):
return process_frame(observation, self.conf)
class NormalizedEnv(gym.ObservationWrapper):
def __init__(self, env=None):
gym.ObservationWrapper.__init__(self, env)
self.state_mean = 0
self.state_std = 0
self.alpha = 0.9999
self.num_steps = 0
def observation(self, observation):
self.num_steps += 1
self.state_mean = self.state_mean * self.alpha + \
observation.mean() * (1 - self.alpha)
self.state_std = self.state_std * self.alpha + \
observation.std() * (1 - self.alpha)
unbiased_mean = self.state_mean / (1 - (self.alpha**self.num_steps))
unbiased_std = self.state_std / (1 - (self.alpha**self.num_steps))
return (observation - unbiased_mean) / (unbiased_std + 1e-8)
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def reset(self, **kwargs):
""" Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset for environments that are fixed until firing."""
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
def step(self, ac):
return self.env.step(ac)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condtion for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env=None, skip=4):
"""Return only every `skip`-th frame"""
super(MaxAndSkipEnv, self).__init__(env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = deque(maxlen=3)
self._skip = skip
def step(self, action):
total_reward = 0.0
done = None
for _ in range(self._skip):
obs, reward, done, info = self.env.step(action)
self._obs_buffer.append(obs)
total_reward += reward
if done:
break
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs):
"""Clear past frame buffer and init. to first obs. from inner env."""
self._obs_buffer.clear()
obs = self.env.reset(**kwargs)
self._obs_buffer.append(obs)
return obs