-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
324 lines (302 loc) · 14.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pickle
import argparse
import json
import gc
import math
from util import *
from sklearn.metrics import classification_report
from keras.callbacks import EarlyStopping
from sklearn.feature_extraction.text import CountVectorizer
from keras.callbacks import ModelCheckpoint
from collections import defaultdict
from gensim.models import word2vec
from keras_han.model import HAN
from nltk.corpus import stopwords
import os
def main(dataset_path, print_flag=True):
def train_word2vec(df, dataset_path):
def get_embeddings(inp_data, vocabulary_inv, size_features=100,
mode='skipgram',
min_word_count=2,
context=5):
num_workers = 15 # Number of threads to run in parallel
downsampling = 1e-3 # Downsample setting for frequent words
print('Training Word2Vec model...')
sentences = [[vocabulary_inv[w] for w in s] for s in inp_data]
if mode == 'skipgram':
sg = 1
print('Model: skip-gram')
elif mode == 'cbow':
sg = 0
print('Model: CBOW')
embedding_model = word2vec.Word2Vec(sentences, workers=num_workers,
sg=sg,
size=size_features,
min_count=min_word_count,
window=context,
sample=downsampling)
embedding_model.init_sims(replace=True)
embedding_weights = np.zeros((len(vocabulary_inv) + 1, size_features))
embedding_weights[0] = 0
for i, word in vocabulary_inv.items():
if word in embedding_model:
embedding_weights[i] = embedding_model[word]
else:
embedding_weights[i] = np.random.uniform(-0.25, 0.25, embedding_model.vector_size)
return embedding_weights
tokenizer = fit_get_tokenizer(df.sentence, max_words=150000)
print("Total number of words: ", len(tokenizer.word_index))
tagged_data = tokenizer.texts_to_sequences(df.sentence)
vocabulary_inv = {}
for word in tokenizer.word_index:
vocabulary_inv[tokenizer.word_index[word]] = word
embedding_mat = get_embeddings(tagged_data, vocabulary_inv)
pickle.dump(tokenizer, open(dataset_path + "tokenizer.pkl", "wb"))
pickle.dump(embedding_mat, open(dataset_path + "embedding_matrix.pkl", "wb"))
def preprocess(df, word_cluster):
print("Preprocessing data..")
stop_words = set(stopwords.words('english'))
stop_words.add('would')
word_vec = {}
for index, row in df.iterrows():
if index % 100 == 0:
print("Finished rows: " + str(index) + " out of " + str(len(df)))
line = row["sentence"]
words = line.strip().split()
new_words = []
for word in words:
try:
vec = word_vec[word]
except:
vec = get_vec(word, word_cluster, stop_words)
if len(vec) == 0:
continue
word_vec[word] = vec
new_words.append(word)
df["sentence"][index] = " ".join(new_words)
return df, word_vec
def generate_pseudo_labels(df, labels, label_term_dict, tokenizer):
def argmax_label(count_dict):
maxi = 0
max_label = None
for l in count_dict:
count = 0
for t in count_dict[l]:
count += count_dict[l][t]
if count > maxi:
maxi = count
max_label = l
return max_label
y = []
X = []
y_true = []
index_word = {}
for w in tokenizer.word_index:
index_word[tokenizer.word_index[w]] = w
for index, row in df.iterrows():
line = row["sentence"]
label = row["label"]
tokens = tokenizer.texts_to_sequences([line])[0]
words = []
for tok in tokens:
words.append(index_word[tok])
count_dict = {}
flag = 0
for l in labels:
seed_words = set()
for w in label_term_dict[l]:
seed_words.add(w)
int_labels = list(set(words).intersection(seed_words))
if len(int_labels) == 0:
continue
for word in words:
if word in int_labels:
flag = 1
try:
temp = count_dict[l]
except:
count_dict[l] = {}
try:
count_dict[l][word] += 1
except:
count_dict[l][word] = 1
if flag:
lbl = argmax_label(count_dict)
if not lbl:
continue
y.append(lbl)
X.append(line)
y_true.append(label)
return X, y, y_true
def train_classifier(df, labels, label_term_dict, label_to_index, index_to_label, dataset_path):
print("Going to train classifier..")
basepath = dataset_path
model_name = "conwea"
dump_dir = basepath + "models/" + model_name + "/"
tmp_dir = basepath + "checkpoints/" + model_name + "/"
os.makedirs(dump_dir, exist_ok=True)
os.makedirs(tmp_dir, exist_ok=True)
max_sentence_length = 100
max_sentences = 15
max_words = 20000
tokenizer = pickle.load(open(dataset_path + "tokenizer.pkl", "rb"))
X, y, y_true = generate_pseudo_labels(df, labels, label_term_dict, tokenizer)
y_one_hot = make_one_hot(y, label_to_index)
print("Fitting tokenizer...")
print("Splitting into train, dev...")
X_train, y_train, X_val, y_val = create_train_dev(X, labels=y_one_hot, tokenizer=tokenizer,
max_sentences=max_sentences,
max_sentence_length=max_sentence_length,
max_words=max_words)
print("Creating Embedding matrix...")
embedding_matrix = pickle.load(open(dataset_path + "embedding_matrix.pkl", "rb"))
print("Initializing model...")
model = HAN(max_words=max_sentence_length, max_sentences=max_sentences, output_size=len(y_train[0]),
embedding_matrix=embedding_matrix)
print("Compiling model...")
model.summary()
model.compile(loss="categorical_crossentropy", optimizer='adam', metrics=['acc'])
print("model fitting - Hierachical attention network...")
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)
mc = ModelCheckpoint(filepath=tmp_dir + 'model.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_acc', mode='max',
verbose=1, save_weights_only=True, save_best_only=True)
model.fit(X_train, y_train, validation_data=(X_val, y_val), nb_epoch=100, batch_size=256, callbacks=[es, mc])
print("****************** CLASSIFICATION REPORT FOR All DOCUMENTS ********************")
X_all = prep_data(texts=df["sentence"], max_sentences=max_sentences, max_sentence_length=max_sentence_length,
tokenizer=tokenizer)
y_true_all = df["label"]
pred = model.predict(X_all)
pred_labels = get_from_one_hot(pred, index_to_label)
print(classification_report(y_true_all, pred_labels))
print("Dumping the model...")
model.save_weights(dump_dir + "model_weights_" + model_name + ".h5")
model.save(dump_dir + "model_" + model_name + ".h5")
return pred_labels
def expand_seeds(df, label_term_dict, pred_labels, label_to_index, index_to_label, word_to_index, index_to_word,
inv_docfreq, docfreq, it, n1, doc_freq_thresh=5):
def get_rank_matrix(docfreq, inv_docfreq, label_count, label_docs_dict, label_to_index, term_count,
word_to_index, doc_freq_thresh):
E_LT = np.zeros((label_count, term_count))
components = {}
for l in label_docs_dict:
components[l] = {}
docs = label_docs_dict[l]
docfreq_local = calculate_doc_freq(docs)
vect = CountVectorizer(vocabulary=list(word_to_index.keys()), tokenizer=lambda x: x.split())
X = vect.fit_transform(docs)
X_arr = X.toarray()
rel_freq = np.sum(X_arr, axis=0) / len(docs)
names = vect.get_feature_names()
for i, name in enumerate(names):
try:
if docfreq_local[name] < doc_freq_thresh:
continue
except:
continue
E_LT[label_to_index[l]][word_to_index[name]] = (docfreq_local[name] / docfreq[name]) * inv_docfreq[
name] * np.tanh(rel_freq[i])
components[l][name] = {"reldocfreq": docfreq_local[name] / docfreq[name],
"idf": inv_docfreq[name],
"rel_freq": np.tanh(rel_freq[i]),
"rank": E_LT[label_to_index[l]][word_to_index[name]]}
return E_LT, components
def disambiguate(label_term_dict, components):
new_dic = {}
for l in label_term_dict:
all_interp_seeds = label_term_dict[l]
seed_to_all_interp = {}
disambiguated_seed_list = []
for word in all_interp_seeds:
temp = word.split("$")
if len(temp) == 1:
disambiguated_seed_list.append(word)
else:
try:
seed_to_all_interp[temp[0]].add(word)
except:
seed_to_all_interp[temp[0]] = {word}
for seed in seed_to_all_interp:
interpretations = seed_to_all_interp[seed]
max_interp = ""
maxi = -1
for interp in interpretations:
try:
if components[l][interp]["rank"] > maxi:
max_interp = interp
maxi = components[l][interp]["rank"]
except:
continue
disambiguated_seed_list.append(max_interp)
new_dic[l] = disambiguated_seed_list
return new_dic
def expand(E_LT, index_to_label, index_to_word, it, label_count, n1, old_label_term_dict, label_docs_dict):
word_map = {}
zero_docs_labels = set()
for l in range(label_count):
if not np.any(E_LT):
continue
elif len(label_docs_dict[index_to_label[l]]) == 0:
zero_docs_labels.add(index_to_label[l])
else:
n = min(n1 * (it), int(math.log(len(label_docs_dict[index_to_label[l]]), 1.5)))
inds_popular = E_LT[l].argsort()[::-1][:n]
for word_ind in inds_popular:
word = index_to_word[word_ind]
try:
temp = word_map[word]
if E_LT[l][word_ind] > temp[1]:
word_map[word] = (index_to_label[l], E_LT[l][word_ind])
except:
word_map[word] = (index_to_label[l], E_LT[l][word_ind])
new_label_term_dict = defaultdict(set)
for word in word_map:
label, val = word_map[word]
new_label_term_dict[label].add(word)
for l in zero_docs_labels:
new_label_term_dict[l] = old_label_term_dict[l]
return new_label_term_dict
label_count = len(label_to_index)
term_count = len(word_to_index)
label_docs_dict = get_label_docs_dict(df, label_term_dict, pred_labels)
E_LT, components = get_rank_matrix(docfreq, inv_docfreq, label_count, label_docs_dict, label_to_index,
term_count, word_to_index, doc_freq_thresh)
if it == 0:
print("Disambiguating seeds..")
label_term_dict = disambiguate(label_term_dict, components)
else:
print("Expanding seeds..")
label_term_dict = expand(E_LT, index_to_label, index_to_word, it, label_count, n1, label_term_dict,
label_docs_dict)
return label_term_dict, components
pkl_dump_dir = dataset_path
df = pickle.load(open(pkl_dump_dir + "df_contextualized.pkl", "rb"))
word_cluster = pickle.load(open(pkl_dump_dir + "word_cluster_map.pkl", "rb"))
with open(pkl_dump_dir + "seedwords.json") as fp:
label_term_dict = json.load(fp)
label_term_dict = add_all_interpretations(label_term_dict, word_cluster)
print_label_term_dict(label_term_dict, None, print_components=False)
labels = list(set(label_term_dict.keys()))
label_to_index, index_to_label = create_label_index_maps(labels)
df, word_vec = preprocess(df, word_cluster)
del word_cluster
gc.collect()
word_to_index, index_to_word = create_word_index_maps(word_vec)
docfreq = calculate_df_doc_freq(df)
inv_docfreq = calculate_inv_doc_freq(df, docfreq)
train_word2vec(df, dataset_path)
for i in range(6):
print("ITERATION: ", i)
pred_labels = train_classifier(df, labels, label_term_dict, label_to_index, index_to_label, dataset_path)
label_term_dict, components = expand_seeds(df, label_term_dict, pred_labels, label_to_index, index_to_label,
word_to_index, index_to_word, inv_docfreq, docfreq, i, n1=5)
if print_flag:
print_label_term_dict(label_term_dict, components)
print("#" * 80)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_path', type=str, default='./data/nyt/')
parser.add_argument('--gpu_id', type=str, default="cpu")
args = parser.parse_args()
if args.gpu_id != "cpu":
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
main(dataset_path=args.dataset_path)