-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRF_predict.R
49 lines (38 loc) · 1.75 KB
/
RF_predict.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
## Perform predictive modeling using Random Forest regression
##
## Dependency: randomForest
## Dependency_own: lambda_functions
################################################################################
RF_predict <- function(x_train, y_train, x_test, y_lims, optimize = FALSE, n_tree = 300, m_try = 0.3333, random_seed = NULL, ...) {
source("C:/Users/SRDhruba/Dropbox (Personal)/ResearchWork/Rtest/lambda_functions.R")
## Initital checks...
# if (!require(randomForest)) # Load package
# library(randomForest)
if (missing(y_lims))
y_lims <- c(min(y_train), max(y_train))
if (m_try > 1 | m_try < 0)
stop("Invalid value! Please choose a value between 0 and 1 (fraction of the features)!")
## Define model & perform prediction...
set.seed(random_seed) # For reproducibility
model_train <- function(x, y, method = "rf") {
ctrl <- caret::trainControl(method = "cv", number = 10, search = "random")
na <- which(is.na(y))
if(length(na) > 0) {
x <- as.matrix(x[-na, ]); y <- y[-na]
} else {
x <- as.matrix(x)
}
# print(dim(x))
Tune <- caret::train(x, y, method = method, tuneLength = 30, trControl = ctrl, preProc = NULL)
# c("center", "scale", "medianImpute"))
return(Tune)
}
if (optimize) {
Forest <- model_train(x = x_train, y = y_train, method = "rf")
} else {
m_try <- round(m_try * ncol(x_train))
Forest <- randomForest::randomForest(x = x_train, y = y_train, ntree = n_tree, mtry = m_try, replace = TRUE, ...)
}
y_pred <- confined(stats::predict(Forest, x_test), lims = y_lims)
y_pred
}