-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistMatch_RStoolbox.R
135 lines (123 loc) · 5.56 KB
/
histMatch_RStoolbox.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#' Image to Image Contrast Matching
#'
#' Performs image to image contrast adjustments based on histogram matching using empirical cumulative
#' distribution functions from both images.
#'
#' @param x Raster*. Source raster which is to be modified.
#' @param ref Raster*. Reference raster, to which x will be matched.
#' @param xmask RasterLayer. Mask layer for \code{x} to exclude pixels which might distort the histogram, i.e. are not present in \code{ref}. Any NA pixel in \code{xmask} will be ignored (\code{maskvalue = NA}).
#' @param refmask RasterLayer. Mask layer for \code{ref}. Any NA pixel in \code{refmask} will be ignored (\code{maskvalue = NA}).
#' @param nSamples Integer. Number of random samples from each image to build the histograms.
#' @param intersectOnly Logical. If \code{TRUE} sampling will only take place in the overlap extent of the two rasters. Otherwise the full rasters will be used for sampling.
#' @param paired Logical. If \code{TRUE} the corresponding pixels will be used in the overlap.
#' @param returnFunctions Logical. If \code{TRUE} the matching functions will be returned instead of applying them to \code{x}.
#' @param ... Further arguments to be passed to \link[raster]{writeRaster}.
#' @param forceInteger Logical. Force integer output.
#' @note \code{x} and \code{ref} must have the same number of layers.
#' @return A Raster* object of \code{x} adjusted to the histogram of \code{ref}. If \code{returnFunctions = TRUE} a list of functions (one for each layer) will be returned instead.
#' @references Richards and Jia: Remote Sensing Digital Image Analysis. Springer, Berlin, Heidelberg, Germany, 439pp.
#' @export
#' @examples
#' library(ggplot2)
#' library(raster)
#' data(rlogo)
#' ## Original image a (+1 to prevent log(0))
#' img_a <- rlogo + 1
#' ## Degraded image b
#' img_b <- log(img_a)
#' ## Cut-off half the image (just for better display)
#' img_b[, 1:50] <- NA
#'
#' ## Compare Images before histMatching
#' ggRGB(img_a,1,2,3)+
#' ggRGB(img_b, 1,2,3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
#' geom_vline(aes(xintercept = 50))+
#' ggtitle("Img_a vs. Img_b")
#'
#' ## Do histogram matching
#' img_b_matched <- histMatch(img_b, img_a)
#'
#' ## Compare Images after histMatching
#' ggRGB(img_a, 1, 2, 3)+
#' ggRGB(img_b_matched, 1, 2, 3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
#' geom_vline(aes(xintercept = 50))+
#' ggtitle("Img_a vs. Img_b_matched")
#'
#' ## Histogram comparison
#' opar <- par(mfrow = c(1, 3), no.readonly = TRUE)
#' img_a[,1:50] <- NA
#' redLayers <- stack(img_a, img_b, img_b_matched)[[c(1,4,7)]]
#' names(redLayers) <- c("img_a", "img_b", "img_b_matched")
#'
#' hist(redLayers)
#' ## Reset par
#' par(opar)
histMatch <- function(x, ref, xmask = NULL, refmask = NULL, nSamples = 1e5, intersectOnly = TRUE, paired = TRUE,
forceInteger = FALSE, returnFunctions = FALSE, ...){
nSamples <- min(ncell(ref), nSamples, ncell(ref))
## Define intersecting extent if required. Returns NULL if FALSE
ext <- if(paired | intersectOnly) intersect(extent(x), extent(ref))
if(paired & is.null(ext)) {
paired <- FALSE
warning("Rasters do not overlap. Precise sampling disabled.", call. = FALSE)
}
if(nlayers(x) != nlayers(ref)) stop("x and ref must have the same number of layers.")
if(!is.null(xmask)) {
.vMessage("Apply xmask")
xfull <- x
x <- mask(x, xmask)
}
if(!is.null(refmask)){
.vMessage("Apply refmask")
ref <- stack(ref, refmask)
}
## Sample histogram data
.vMessage("Extract samples")
ref.sample <- as.matrix(sampleRandom(ref, size = nSamples, na.rm = TRUE, ext = ext, xy = paired))
if(!is.null(refmask)) ref.sample <- ref.sample[,-ncol(ref.sample), drop = FALSE]
if(paired) {
x.sample <- extract(x, ref.sample[,c("x","y")])
if(is.vector(x.sample)) x.sample <- as.matrix(x.sample)
valid <- complete.cases(x.sample)
ref.sample <- ref.sample[valid, -c(1:2), drop = FALSE]
x.sample <- x.sample[valid, , drop = FALSE]
} else {
x.sample <- as.matrix(sampleRandom(x, size = nSamples, na.rm = T, ext = ext))
}
.vMessage("Calculate empirical cumulative histograms")
layerFun <- lapply(1:ncol(x.sample), function(i) {
## Estimate source empirical cumulative distribution function
source.ecdf <- ecdf(x.sample[,i])
## Estimate and invert reference ecdf
ecdf.ref <- ecdf(ref.sample[,i])
kn <- knots(ecdf.ref)
y <- ecdf.ref(kn)
limits <- if(.hasMinMax(ref[[i]])) c(minValue(ref)[i], maxValue(ref)[i]) else range(ref.sample)
inverse.ref.ecdf <- approxfun(y, kn, method = "linear", yleft = limits[1] , yright = limits[2], ties = "ordered")
## Function definition
histMatchFun <- if(grepl("INT", dataType(ref)[i]) | forceInteger)
function(values, na.rm = FALSE){round( inverse.ref.ecdf( source.ecdf(values)))}
else {
function(values, na.rm = FALSE){ inverse.ref.ecdf( source.ecdf(values))}
}
histMatchFun
})
totalFun <- function(xvals, f = layerFun) {
if(is.vector(xvals)) xvals <- as.matrix(xvals)
app <- lapply(1:ncol(xvals), function(i) {
f[[i]](xvals[,i])
})
do.call("cbind", app)
}
## Return LUT functions
if(returnFunctions) {
names(layerFun) <- names(x)
return(layerFun)
}
## Apply histMatch to raster
.vMessage("Apply histogram match functions")
out <- raster::calc(x, fun = totalFun, forcefun = TRUE, ...)
if(!is.null(xmask)) out <- merge(xfull, out, ..., overwrite = TRUE)
names(out) <- names(x)
out
}