-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hist_match.R
113 lines (78 loc) · 2.67 KB
/
test_hist_match.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
library(RStoolbox)
library(ggplot2)
library(raster)
data(rlogo)
## Original image a (+1 to prevent log(0))
img_a <- rlogo + 1
## Degraded image b
img_b <- log(img_a)
## Cut-off half the image (just for better display)
img_b[, 1:50] <- NA
## Compare Images before histMatching
ggRGB(img_a,1,2,3) +
ggRGB(img_b, 1,2,3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
geom_vline(aes(xintercept = 50)) + ggtitle("Img_a vs. Img_b")
## Do histogram matching
img_b_matched <- histMatch(img_b, img_a)
## Compare Images after histMatching
ggRGB(img_a, 1, 2, 3) +
ggRGB(img_b_matched, 1, 2, 3, ggLayer = TRUE, stretch = "lin", q = 0:1) +
geom_vline(aes(xintercept = 50)) + ggtitle("Img_a vs. Img_b_matched")
## Histogram comparison
opar <- par(mfrow = c(1, 3), no.readonly = TRUE)
img_a[, 1:50] <- NA
redLayers <- stack(img_a, img_b, img_b_matched)[[c(1,4,7)]]
names(redLayers) <- c("img_a", "img_b", "img_b_matched")
hist(redLayers)
## Reset par
par(opar)
#########################################################################################################
setwd("C:/Users/SRDhruba/Dropbox (Personal)/ResearchWork/Rtest/")
library(tiff)
library(RStoolbox)
library(raster)
library(ggplot2)
library(grid)
library(ggpubr)
# data(rlogo)
x1 <- readTIFF("tire.tif", native = FALSE)
x2 <- readTIFF("pout.tif", native = FALSE)
X1 <- raster(x1)
X2 <- raster(x2)
X1m <- histMatch(X1, ref = X2)
x1m <- as.matrix(X1m)
plot.new()
rasterImage(x1, 0, 0, 0.2, 0.8); rasterImage(x2, 0.4, 0, 0.6, 0.8); rasterImage(x1m, 0.8, 0, 1, 0.8)
op <- par(mfrow = c(1, 3))
hist(x1, main = "target"); hist(x2, main = "ref"); hist(x1m, main = "matched")
par(op)
####
library(RStoolbox)
library(raster)
hist.match <- function(src, ref, n.samp = 1e6){
## Estimate distributions...
ss <- sample(src, size = n.samp, replace = TRUE)
rr <- sample(ref, size = n.samp, replace = TRUE)
ss.cdf <- ecdf(ss); rr.cdf <- ecdf(rr)
## Calculate mapping...
kn <- knots(rr.cdf); kn.lims <- range(rr)
fn <- rr.cdf(kn)
rr.cdf.inv <- approxfun(x = fn, y = kn, yleft = kn.lims[1], yright = kn.lims[2], ties = "ordered")
## Return matched samples...
src.matched <- rr.cdf.inv(ss.cdf(src))
return(src.matched)
}
y1 <- runif(n = 100, min = -2, max = 1)
# y1 <- rnorm(n = 100, mean = 1.2, sd = 0.65)
y2 <- rnorm(n = 100, mean = 0, sd = 0.8)
op <- par(mfrow = c(1, 4))
hist(y1, freq = FALSE, main = "target")
hist(y2, freq = FALSE, main = "ref")
Y1 <- raster(as.matrix(y1))
Y2 <- raster(as.matrix(y2))
Y1m <- histMatch(Y1, ref = Y2)
y1m <- getValues(Y1m)
hist(y1m, freq = FALSE, main = "matched_1")
y1m2 <- hist.match(y1, ref = y2)
hist(y1m2, freq = FALSE, main = "matched_2")
par(op)