-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
93 lines (81 loc) · 3.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from simulation import MUIRSSimuation, SimulationResult
import util
import numpy as np
import math
import matplotlib.pyplot as plt
from multiprocessing import Pool
import argparse
simulation_count = 100
r1 = 20
gamma = 1
SNR_db = np.arange(-4, 21, 4)
N = 10
tol = 1e-2
max_iter = 100
def create_simulations():
simulations = []
for idx in range(simulation_count):
simulation = MUIRSSimuation(
1e9, # fc Hz
4, # BS antennas
(0, 0, 0), # BS position
N, # IRS elements
(0, 21, 0), # IRS position
-80, # sigma^2 dB
SNR_db, # SNR dB
-20, # c0 dB
2.7, # alpha bs-irs
math.inf, # beta bs-irs
gamma, # gamma
tol, # tolerance
max_iter) # maximum number of iterations
for u in range(4): # add 4 users
theta = np.pi / 4 + (u - 1) * np.pi / 2
p1 = simulation.bs.pos[0] + r1 * np.sin(theta)
p2 = simulation.bs.pos[1] + r1 * np.cos(theta)
p3 = simulation.bs.pos[2]
simulation.add_user((p1, p2, p3),
2.5, # alpha_bs_u
2.1, # alpha_irs_u
util.db2lin(3), # beta_bs_u
util.db2lin(3)) # beta_irs_u
simulations.append(simulation)
return simulations
def run_simulation(simulation):
return simulation.simulate()
def create_argument_parser():
par = argparse.ArgumentParser(description='MU IRS Simulation')
par.add_argument('gamma', type=float, help='value of gamma for the simulation', default=1.0)
return par
if __name__ == '__main__':
parser = create_argument_parser()
args = parser.parse_args()
gamma = args.gamma
results = []
create_simulations()
with Pool() as p:
all_results = p.map(run_simulation, create_simulations())
for sim_result in all_results:
if len(results) < 1:
for r in sim_result:
results.append(r)
else:
for i in range(len(sim_result)):
for k in range(len(sim_result[i].results)):
results[i].results[k].x = results[i].results[k].x + sim_result[i].results[k].x
results[i].results[k].y = results[i].results[k].y + sim_result[i].results[k].y
for i in range(len(results)):
for k in range(len(results[i].results)):
results[i].results[k].x = results[i].results[k].x / simulation_count
results[i].results[k].y = results[i].results[k].y / simulation_count
for result in results:
fig, ax = plt.subplots()
r = result.results
plt.plot(r[0].x, r[0].y, label=r[0].text, marker='s')
plt.plot(r[1].x, r[1].y, label=r[1].text, marker='*', linestyle='--')
plt.xlabel(result.xlabel)
plt.ylabel(result.ylabel)
plt.title(result.title)
plt.legend()
# plt.show()
fig.savefig(result.title + '_' + str(gamma) + '_' + str(N) + '_itreq_' + str(max_iter) + '.png')