-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
251 lines (197 loc) · 8.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Optimization method
# Using trained VGG Net
# L(P,A,X) = alpha * L_content(p,x) + beta * L_style(a,x)
# p is the content image
# a is the syle image
# x is the generated image
# Paper Reference: https://arxiv.org/pdf/1508.06576.pdf
import os
import uuid
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
from torchvision.utils import save_image
import numpy as np
from loss import ContentLoss,StyleLoss,Normalization
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
imsize = 512 if torch.cuda.is_available() else 256
def image_loader(style_img,content_img,input_img,imsize,gr):
tr = transforms.Compose([transforms.Resize((imsize,imsize)),transforms.ToTensor()])
if gr:
style_image = tr(style_img).unsqueeze(0)
content_image = tr(content_img).unsqueeze(0)
else:
style_image = Image.open(style_img)
content_image = Image.open(content_img)
#Image : Channel * height * width
# After unsqueeze: Batch size * Channel * height * width
style_image = tr(style_image).unsqueeze(0)
content_image = tr(content_image).unsqueeze(0)
if input_img == 'noise':
input_image = torch.randn(content_image.data.size(),device=device)
return style_image.to(device,torch.float),content_image.to(device,torch.float),input_image
#Displaying Images
def display_image(tensor,title=None):
tr = transforms.ToPILImage()
image = tensor.cpu().clone()
image = image.squeeze(0) # Remove the batch dimension
image = tr(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001)
def get_model(cnn,normalization_mean,normalization_std,style_img,content_img,content_lyr,style_lyr):
cnn = copy.deepcopy(cnn)
normalization = Normalization(normalization_mean,normalization_std).to(device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer,nn.Conv2d):
i+=1
name = f'conv_{i}'
elif isinstance(layer,nn.ReLU):
name = f'relu_{i}'
layer = nn.ReLU(inplace = False)
elif isinstance(layer,nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer,nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError(f'Unrecognized layer {layer.__class__.__name__}')
model.add_module(name,layer)
if name in content_lyr:
# Add content loss
content = model(content_img).detach()
content_loss = ContentLoss(content)
model.add_module(f"content_loss{i}",content_loss)
content_losses.append(content_loss)
if name in style_lyr:
# Add style loss
style = model(style_img).detach()
style_loss = StyleLoss(style)
model.add_module(f"style_loss{i}",style_loss)
style_losses.append(style_loss)
for i in range(len(model) - 1, -1 ,-1):
if((isinstance(model[i],ContentLoss)) or (isinstance(model[i],StyleLoss))):
break
model = model[:(i + 1)]
return model,style_losses,content_losses
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_transfer(model,style_losses,content_losses,content_img,style_img,input_img,num_steps=300,
style_weight = 1000000,content_weight = 1):
print("Building the neural style transfer model..")
optimizer = get_input_optimizer(input_img)
print("Running optimizer")
tr = transforms.ToPILImage()
intermediate_img = []
image = input_img.detach().cpu().clone()
image_np = image.squeeze(0)
image_np = tr(image_np)
intermediate_img.append(image_np)
# np.transpose(input_img.detach().cpu().numpy(), (1, 2, 0))
plt.imshow(image_np)
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
input_img.data.clamp_(0,1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for style_layer in style_losses:
style_score += (1/5) * style_layer.loss # 1/5 in the paper
for content_layer in content_losses:
content_score += content_layer.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 100 == 0:
print(f"run {run}")
print("Style Loss : {:4f} Content Loss: {:4f}".format(style_score.item(),content_score.item()))
image = input_img.detach().cpu().clone()
image_np = image.squeeze(0)
image_np = tr(image_np)
intermediate_img.append(image_np)
return style_score + content_score
optimizer.step(closure)
input_img.data.clamp_(0,1)
return input_img,intermediate_img
def NST(content_lyr,content,style_lyr,style,input_img,num_steps,style_weight,content_weight,gr):
if not gr:
style_img,content_img,input_img = image_loader(f"{dir}/style_images/{style}",f"{dir}/content_images/{content}",input_img,imsize,False)
assert style_img.size() == content_img.size()
else:
style_img,content_img,input_img = style,content,input_img
assert style_img.size() == content_img.size()
# Get the VGG 19 model (Set it to evaluation mode)
cnn = models.vgg19(pretrained = True).features.to(device).eval()
# VGG net is normalized with mean and std
cnn_normalization_mean = torch.tensor([0.485,0.456,0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229,0.224,0.225]).to(device)
model,style_losses,content_losses = get_model(cnn,cnn_normalization_mean,cnn_normalization_std,style_img,
content_img,content_lyr,style_lyr)
output,inter = run_style_transfer(model,style_losses,content_losses,content_img,style_img,
input_img,num_steps=num_steps,style_weight = style_weight,content_weight = content_weight)
if gr:
tr = transforms.ToPILImage()
image = output.cpu().clone()
image = image.squeeze(0) # Remove the batch dimension
image = tr(image)
return image
id = uuid.uuid4()
saved_img = f"{save_dir}/{os.path.splitext(args.style)[0]}_{os.path.splitext(args.content)[0]}_{id}"
save_image(output,f"{saved_img}.jpg")
fig, axs = plt.subplots(nrows=1, ncols=len(inter), figsize=(20, 5))
for i, img in enumerate(inter):
axs[i].imshow(img)
axs[i].axis('off')
filename = f"{saved_img}_sequence.jpg"
plt.savefig(filename)
if __name__ == '__main__':
import random
random.seed(10)
#Params
style_lyr = ['conv_1','conv_2','conv_3','conv_4','conv_5']
content_lyr = ['conv_5']
dir = './images'
save_dir = './nst_images'
parser = argparse.ArgumentParser()
parser.add_argument('--content_lyr', type=list, required=False,default=['conv_5'])
parser.add_argument('--style_lyr', type=list, required=False,default=['conv_1','conv_2','conv_3','conv_4','conv_5'])
parser.add_argument('--style', type=str, required=True)
parser.add_argument('--content', type=str, required=True)
parser.add_argument('--input', type=str, required=True)
parser.add_argument('--display',type = bool,required=False,default=False)
parser.add_argument('--num_steps',type = int,required=False,default = 500)
parser.add_argument('--style_weight',type=int,required=False,default=1000000)
parser.add_argument('--content_weight',type=int,required=False,default=1)
args = parser.parse_args()
if args.display:
plt.figure()
display_image(style_img,title="style image")
plt.figure()
display_image(content_img,title="content_image")
plt.figure()
display_image(input_img,title='Input Image')
NST(args.content_lyr,args.content,args.style_lyr,args.style,args.input,args.num_steps,args.style_weight,args.content_weight,False)
plt.figure()
display_image(output,title='Output Image')
plt.ioff()
plt.show()
else:
NST(args.content_lyr,args.content,args.style_lyr,args.style,args.input,args.num_steps,args.style_weight,args.content_weight,False)