diff --git a/_sources/autoapi/minerva/models/nets/deep_conv_lstm/index.rst.txt b/_sources/autoapi/minerva/models/nets/deep_conv_lstm/index.rst.txt deleted file mode 100644 index 83eadeb..0000000 --- a/_sources/autoapi/minerva/models/nets/deep_conv_lstm/index.rst.txt +++ /dev/null @@ -1,256 +0,0 @@ -minerva.models.nets.deep_conv_lstm -================================== - -.. py:module:: minerva.models.nets.deep_conv_lstm - - -Classes -------- - -.. autoapisummary:: - - minerva.models.nets.deep_conv_lstm.ConvLSTMCell - minerva.models.nets.deep_conv_lstm.DeepConvLSTM - minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel - - -Module Contents ---------------- - -.. py:class:: ConvLSTMCell(input_shape) - - Bases: :py:obj:`torch.nn.Module` - - - .. py:method:: _calculate_conv_output_shape(backbone, input_shape) - - - .. py:method:: forward(x) - - -.. py:class:: DeepConvLSTM(input_shape = (1, 6, 60), num_classes = 6, learning_rate = 0.001) - - Bases: :py:obj:`minerva.models.nets.base.SimpleSupervisedModel` - - - Simple pipeline for supervised models. - - This class implements a very common deep learning pipeline, which is - composed by the following steps: - - 1. Make a forward pass with the input data on the backbone model; - 2. Make a forward pass with the input data on the fc model; - 3. Compute the loss between the output and the label data; - 4. Optimize the model (backbone and FC) parameters with respect to the loss. - - This reduces the code duplication for autoencoder models, and makes it - easier to implement new models by only changing the backbone model. More - complex models, that does not follow this pipeline, should not inherit from - this class. - Note that, for this class the input data is a tuple of tensors, where the - first tensor is the input data and the second tensor is the mask or label. - - Initialize the model with the backbone, fc, loss function and - metrics. Metrics are used to evaluate the model during training, - validation, testing or prediction. It will be logged using - lightning logger at the end of each epoch. Metrics should implement - the `torchmetrics.Metric` interface. - - Parameters - ---------- - backbone : torch.nn.Module - The backbone model. Usually the encoder/decoder part of the model. - fc : torch.nn.Module - The fully connected model, usually used to classification tasks. - Use `torch.nn.Identity()` if no FC model is needed. - loss_fn : torch.nn.Module - The function used to compute the loss. - learning_rate : float, optional - The learning rate to Adam optimizer, by default 1e-3 - flatten : bool, optional - If `True` the input data will be flattened before passing through - the fc model, by default True - - train_metrics : Dict[str, Metric], optional - The metrics to be used during training, by default None - val_metrics : Dict[str, Metric], optional - The metrics to be used during validation, by default None - test_metrics : Dict[str, Metric], optional - The metrics to be used during testing, by default None - predict_metrics : Dict[str, Metric], optional - The metrics to be used during prediction, by default None - - - .. py:method:: _calculate_fc_input_features(backbone, input_shape) - - Run a single forward pass with a random input to get the number of - features after the convolutional layers. - - Parameters - ---------- - backbone : torch.nn.Module - The backbone of the network - input_shape : Tuple[int, int, int] - The input shape of the network. - - Returns - ------- - int - The number of features after the convolutional layers. - - - - .. py:method:: _create_backbone(input_shape) - - - .. py:method:: _create_fc(input_features, num_classes) - - -.. py:class:: SimpleSupervisedModel(backbone, fc, loss_fn, learning_rate = 0.001, flatten = True, train_metrics = None, val_metrics = None, test_metrics = None) - - Bases: :py:obj:`lightning.LightningModule` - - - Simple pipeline for supervised models. - - This class implements a very common deep learning pipeline, which is - composed by the following steps: - - 1. Make a forward pass with the input data on the backbone model; - 2. Make a forward pass with the input data on the fc model; - 3. Compute the loss between the output and the label data; - 4. Optimize the model (backbone and FC) parameters with respect to the loss. - - This reduces the code duplication for autoencoder models, and makes it - easier to implement new models by only changing the backbone model. More - complex models, that does not follow this pipeline, should not inherit from - this class. - Note that, for this class the input data is a tuple of tensors, where the - first tensor is the input data and the second tensor is the mask or label. - - Initialize the model with the backbone, fc, loss function and - metrics. Metrics are used to evaluate the model during training, - validation, testing or prediction. It will be logged using - lightning logger at the end of each epoch. Metrics should implement - the `torchmetrics.Metric` interface. - - Parameters - ---------- - backbone : torch.nn.Module - The backbone model. Usually the encoder/decoder part of the model. - fc : torch.nn.Module - The fully connected model, usually used to classification tasks. - Use `torch.nn.Identity()` if no FC model is needed. - loss_fn : torch.nn.Module - The function used to compute the loss. - learning_rate : float, optional - The learning rate to Adam optimizer, by default 1e-3 - flatten : bool, optional - If `True` the input data will be flattened before passing through - the fc model, by default True - - train_metrics : Dict[str, Metric], optional - The metrics to be used during training, by default None - val_metrics : Dict[str, Metric], optional - The metrics to be used during validation, by default None - test_metrics : Dict[str, Metric], optional - The metrics to be used during testing, by default None - predict_metrics : Dict[str, Metric], optional - The metrics to be used during prediction, by default None - - - .. py:method:: _compute_metrics(y_hat, y, step_name) - - Calculate the metrics for the given step. - - Parameters - ---------- - y_hat : torch.Tensor - The output data from the forward pass. - y : torch.Tensor - The input data/label. - step_name : str - Name of the step. It will be used to get the metrics from the - `self.metrics` attribute. - - Returns - ------- - Dict[str, torch.Tensor] - A dictionary with the metrics values. - - - - .. py:method:: _loss_func(y_hat, y) - - Calculate the loss between the output and the input data. - - Parameters - ---------- - y_hat : torch.Tensor - The output data from the forward pass. - y : torch.Tensor - The input data/label. - - Returns - ------- - torch.Tensor - The loss value. - - - - .. py:method:: _single_step(batch, batch_idx, step_name) - - Perform a single train/validation/test step. It consists in making a - forward pass with the input data on the backbone model, computing the - loss between the output and the input data, and logging the loss. - - Parameters - ---------- - batch : torch.Tensor - The input data. It must be a 2-element tuple of tensors, where the - first tensor is the input data and the second tensor is the mask. - batch_idx : int - The index of the batch. - step_name : str - The name of the step. It will be used to log the loss. The possible - values are: "train", "val" and "test". The loss will be logged as - "{step_name}_loss". - - Returns - ------- - torch.Tensor - A tensor with the loss value. - - - - .. py:method:: configure_optimizers() - - - .. py:method:: forward(x) - - Perform a forward pass with the input data on the backbone model. - - Parameters - ---------- - x : torch.Tensor - The input data. - - Returns - ------- - torch.Tensor - The output data from the forward pass. - - - - .. py:method:: predict_step(batch, batch_idx, dataloader_idx=None) - - - .. py:method:: test_step(batch, batch_idx) - - - .. py:method:: training_step(batch, batch_idx) - - - .. py:method:: validation_step(batch, batch_idx) - - diff --git a/_sources/autoapi/minerva/models/nets/index.rst.txt b/_sources/autoapi/minerva/models/nets/index.rst.txt index 38d8910..c1784a8 100644 --- a/_sources/autoapi/minerva/models/nets/index.rst.txt +++ b/_sources/autoapi/minerva/models/nets/index.rst.txt @@ -13,7 +13,6 @@ Submodules /autoapi/minerva/models/nets/base/index /autoapi/minerva/models/nets/cnn_ha_etal/index /autoapi/minerva/models/nets/cnn_pf/index - /autoapi/minerva/models/nets/deep_conv_lstm/index /autoapi/minerva/models/nets/deeplabv3/index /autoapi/minerva/models/nets/imu_transformer/index /autoapi/minerva/models/nets/inception_time/index diff --git a/api.html b/api.html index fd062f9..dc13513 100644 --- a/api.html +++ b/api.html @@ -465,36 +465,6 @@
ConvLSTMCell
-DeepConvLSTM
-SimpleSupervisedModel
SimpleSupervisedModel._compute_metrics()
SimpleSupervisedModel._loss_func()
SimpleSupervisedModel._single_step()
SimpleSupervisedModel.configure_optimizers()
SimpleSupervisedModel.forward()
SimpleSupervisedModel.predict_step()
SimpleSupervisedModel.test_step()
SimpleSupervisedModel.training_step()
SimpleSupervisedModel.validation_step()
MPSTTVPython Module Index
| minerva.models.nets.cnn_pf
| |
- |
- minerva.models.nets.deep_conv_lstm | - |
diff --git a/searchindex.js b/searchindex.js index 669a7e4..650ff63 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"1. Reproducibility": [[52, "1.-Reproducibility"]], "2. Composition": [[52, "2.-Composition"]], "3. Integration with CLI": [[52, "3.-Integration-with-CLI"]], "4. Logging and Monitoring": [[52, "4.-Logging-and-Monitoring"]], "5. Clonability": [[52, "5.-Clonability"]], "6. Parallel and Distributed Environments": [[52, "6.-Parallel-and-Distributed-Environments"]], "A Simple Example of training a model using Minerva": [[53, "A-Simple-Example-of-training-a-model-using-Minerva"]], "Attributes": [[15, "attributes"], [18, "attributes"], [31, "attributes"], [35, "attributes"], [37, "attributes"], [44, "attributes"]], "Classes": [[2, "classes"], [3, "classes"], [4, "classes"], [5, "classes"], [6, "classes"], [8, "classes"], [9, "classes"], [10, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [18, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [40, "classes"], [45, "classes"]], "Contents:": [[47, null]], "Contributing": [[46, "contributing"]], "Datasets, Readers, and Related Data Structures": [[50, "Datasets,-Readers,-and-Related-Data-Structures"]], "Examples": [[4, "examples"], [5, "examples"], [5, "id19"], [6, "examples"], [6, "id19"], [9, "examples"], [9, "id18"], [10, "examples"], [15, "examples"], [15, "id14"]], "Examples of Data Units, Samples, and Datasets": [[50, "Examples-of-Data-Units,-Samples,-and-Datasets"]], "Examples of Dataset Implementations": [[50, "Examples-of-Dataset-Implementations"]], "Functions": [[17, "functions"], [18, "functions"], [30, "functions"], [31, "functions"], [37, "functions"], [40, "functions"], [42, "functions"], [43, "functions"], [45, "functions"]], "General configs": [[53, "General-configs"]], "How a Dataset Class Works": [[50, "How-a-Dataset-Class-Works"]], "Human Activity Recognition using Inertial Sensors Example": [[50, "Human-Activity-Recognition-using-Inertial-Sensors-Example"]], "Image Segmentation Example": [[50, "Image-Segmentation-Example"]], "Indices and tables": [[47, "indices-and-tables"]], "Installation Guide": [[48, "installation-guide"]], "Key Definitions": [[50, "Key-Definitions"]], "Models": [[51, "Models"]], "Module Contents": [[3, "module-contents"], [4, "module-contents"], [6, "module-contents"], [8, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [13, "module-contents"], [14, "module-contents"], [15, "module-contents"], [17, "module-contents"], [18, "module-contents"], [21, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [27, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [35, "module-contents"], [37, "module-contents"], [39, "module-contents"], [40, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"], [45, "module-contents"]], "Notes": [[9, "notes"], [15, "notes"]], "Our Data Module": [[53, "Our-Data-Module"]], "Our Model": [[53, "Our-Model"]], "Our Pipeline and model\u2019s training": [[53, "Our-Pipeline-and-model's-training"]], "Our Solution: Readers": [[50, "Our-Solution:-Readers"]], "Our Trainer": [[53, "Our-Trainer"]], "Package Contents": [[2, "package-contents"], [5, "package-contents"], [9, "package-contents"], [28, "package-contents"], [36, "package-contents"], [38, "package-contents"]], "Parameters": [[2, "parameters"], [2, "id1"], [3, "parameters"], [3, "id1"], [4, "parameters"], [4, "id17"], [4, "id19"], [5, "parameters"], [5, "id17"], [5, "id28"], [5, "id29"], [6, "parameters"], [6, "id17"], [6, "id28"], [6, "id29"], [6, "id31"], [8, "parameters"], [8, "id1"], [8, "id2"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id12"], [9, "id16"], [9, "id17"], [9, "id23"], [9, "id27"], [10, "parameters"], [10, "id9"], [10, "id12"], [10, "id13"], [11, "parameters"], [11, "id1"], [11, "id3"], [12, "parameters"], [13, "parameters"], [13, "id1"], [13, "id3"], [14, "parameters"], [14, "id2"], [15, "parameters"], [15, "id9"], [15, "id12"], [15, "id13"], [18, "parameters"], [21, "parameters"], [21, "id1"], [21, "id2"], [21, "id4"], [21, "id6"], [22, "parameters"], [22, "id1"], [22, "id2"], [22, "id3"], [22, "id5"], [22, "id6"], [22, "id8"], [22, "id10"], [22, "id12"], [23, "parameters"], [23, "id1"], [23, "id2"], [23, "id3"], [23, "id4"], [23, "id6"], [23, "id8"], [23, "id10"], [24, "parameters"], [24, "id1"], [24, "id2"], [24, "id3"], [24, "id5"], [24, "id7"], [24, "id9"], [25, "parameters"], [25, "id1"], [25, "id2"], [25, "id3"], [25, "id5"], [25, "id7"], [26, "parameters"], [26, "id1"], [26, "id2"], [26, "id3"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [27, "parameters"], [27, "id1"], [27, "id2"], [27, "id3"], [27, "id5"], [27, "id7"], [27, "id9"], [28, "parameters"], [28, "id1"], [28, "id2"], [28, "id3"], [28, "id5"], [28, "id6"], [28, "id8"], [28, "id10"], [28, "id12"], [28, "id15"], [28, "id16"], [28, "id17"], [29, "parameters"], [29, "id1"], [29, "id2"], [29, "id3"], [29, "id4"], [29, "id5"], [29, "id6"], [29, "id8"], [29, "id10"], [29, "id12"], [30, "parameters"], [30, "id1"], [30, "id2"], [30, "id5"], [30, "id6"], [30, "id7"], [32, "parameters"], [32, "id1"], [32, "id2"], [32, "id4"], [32, "id6"], [32, "id8"], [32, "id9"], [32, "id10"], [33, "parameters"], [34, "parameters"], [34, "id1"], [34, "id2"], [34, "id4"], [34, "id6"], [34, "id8"], [34, "id9"], [35, "parameters"], [35, "id1"], [35, "id2"], [36, "parameters"], [36, "id1"], [36, "id2"], [37, "parameters"], [37, "id1"], [37, "id2"], [37, "id13"], [37, "id14"], [37, "id16"], [37, "id18"], [37, "id19"], [37, "id21"], [37, "id24"], [38, "parameters"], [38, "id1"], [38, "id2"], [38, "id3"], [39, "parameters"], [39, "id1"], [39, "id2"], [39, "id3"], [39, "id4"], [39, "id5"], [39, "id6"]], "Pip Installation": [[48, "pip-installation"]], "Pipelines": [[52, "Pipelines"]], "Programming Reference": [[0, "programming-reference"]], "Pros and Cons": [[50, "Pros-and-Cons"]], "Raises": [[5, "raises"], [6, "raises"], [9, "raises"], [9, "id25"], [11, "raises"], [14, "raises"], [18, "raises"], [30, "raises"], [35, "raises"], [36, "raises"], [37, "raises"], [37, "id23"]], "References": [[25, "references"], [28, "references"], [28, "id14"], [32, "references"]], "Returns": [[4, "returns"], [4, "id18"], [4, "id20"], [4, "id21"], [5, "returns"], [5, "id18"], [5, "id30"], [6, "returns"], [6, "id18"], [6, "id30"], [6, "id32"], [6, "id33"], [8, "returns"], [8, "id3"], [9, "returns"], [9, "id2"], [9, "id13"], [9, "id14"], [9, "id15"], [9, "id24"], [9, "id26"], [9, "id28"], [9, "id29"], [10, "returns"], [10, "id10"], [10, "id11"], [10, "id14"], [10, "id15"], [11, "returns"], [11, "id2"], [11, "id4"], [11, "id5"], [12, "returns"], [12, "id1"], [13, "returns"], [13, "id2"], [13, "id4"], [13, "id5"], [14, "returns"], [14, "id1"], [14, "id3"], [14, "id4"], [15, "returns"], [15, "id10"], [15, "id11"], [21, "returns"], [21, "id3"], [21, "id5"], [21, "id7"], [22, "returns"], [22, "id4"], [22, "id7"], [22, "id9"], [22, "id11"], [22, "id13"], [23, "returns"], [23, "id5"], [23, "id7"], [23, "id9"], [23, "id11"], [24, "returns"], [24, "id4"], [24, "id6"], [24, "id8"], [24, "id10"], [25, "returns"], [25, "id4"], [25, "id6"], [25, "id8"], [26, "returns"], [26, "id5"], [26, "id7"], [26, "id9"], [27, "returns"], [27, "id4"], [27, "id6"], [27, "id8"], [27, "id10"], [28, "returns"], [28, "id4"], [28, "id7"], [28, "id9"], [28, "id11"], [28, "id13"], [28, "id18"], [29, "returns"], [29, "id7"], [29, "id9"], [29, "id11"], [29, "id13"], [30, "returns"], [30, "id3"], [32, "returns"], [32, "id3"], [32, "id5"], [32, "id7"], [34, "returns"], [34, "id3"], [34, "id5"], [34, "id7"], [34, "id10"], [35, "returns"], [35, "id3"], [35, "id4"], [35, "id5"], [35, "id6"], [35, "id7"], [35, "id8"], [35, "id9"], [35, "id10"], [35, "id11"], [35, "id12"], [36, "returns"], [36, "id3"], [36, "id4"], [36, "id5"], [36, "id6"], [36, "id7"], [36, "id8"], [36, "id9"], [36, "id10"], [36, "id11"], [36, "id12"], [37, "returns"], [37, "id3"], [37, "id4"], [37, "id5"], [37, "id6"], [37, "id7"], [37, "id8"], [37, "id9"], [37, "id10"], [37, "id11"], [37, "id12"], [37, "id15"], [37, "id17"], [37, "id20"], [37, "id22"], [37, "id25"], [37, "id26"], [37, "id27"]], "Submodules": [[2, "submodules"], [5, "submodules"], [9, "submodules"], [19, "submodules"], [28, "submodules"], [36, "submodules"], [38, "submodules"], [41, "submodules"]], "Subpackages": [[1, "subpackages"], [7, "subpackages"], [16, "subpackages"], [20, "subpackages"]], "Testing": [[53, "Testing"]], "The SimpleSupervisedModel class": [[51, "The-SimpleSupervisedModel-class"]], "Tutorials": [[54, "tutorials"]], "Welcome to Minerva\u2019s documentation!": [[47, "welcome-to-minerva-s-documentation"]], "minerva": [[16, "module-minerva"], [49, "minerva"]], "minerva.analysis": [[1, "module-minerva.analysis"]], "minerva.analysis.metrics": [[2, "module-minerva.analysis.metrics"]], "minerva.analysis.metrics.pixel_accuracy": [[3, "module-minerva.analysis.metrics.pixel_accuracy"]], "minerva.data": [[7, "module-minerva.data"]], "minerva.data.datasets": [[5, "module-minerva.data.datasets"]], "minerva.data.datasets.base": [[4, "module-minerva.data.datasets.base"]], "minerva.data.datasets.supervised_dataset": [[6, "module-minerva.data.datasets.supervised_dataset"]], "minerva.data.readers": [[9, "module-minerva.data.readers"]], "minerva.data.readers.csv_reader": [[8, "module-minerva.data.readers.csv_reader"]], "minerva.data.readers.patched_array_reader": [[10, "module-minerva.data.readers.patched_array_reader"]], "minerva.data.readers.png_reader": [[11, "module-minerva.data.readers.png_reader"]], "minerva.data.readers.reader": [[12, "module-minerva.data.readers.reader"]], "minerva.data.readers.tabular_reader": [[13, "module-minerva.data.readers.tabular_reader"]], "minerva.data.readers.tiff_reader": [[14, "module-minerva.data.readers.tiff_reader"]], "minerva.data.readers.zarr_reader": [[15, "module-minerva.data.readers.zarr_reader"]], "minerva.losses": [[19, "module-minerva.losses"]], "minerva.losses._functional": [[17, "module-minerva.losses._functional"]], "minerva.losses.dice": [[18, "module-minerva.losses.dice"]], "minerva.models": [[20, "module-minerva.models"]], "minerva.models.nets": [[28, "module-minerva.models.nets"]], "minerva.models.nets.base": [[21, "module-minerva.models.nets.base"]], "minerva.models.nets.cnn_ha_etal": [[22, "module-minerva.models.nets.cnn_ha_etal"]], "minerva.models.nets.cnn_pf": [[23, "module-minerva.models.nets.cnn_pf"]], "minerva.models.nets.deep_conv_lstm": [[24, "module-minerva.models.nets.deep_conv_lstm"]], "minerva.models.nets.deeplabv3": [[25, "module-minerva.models.nets.deeplabv3"]], "minerva.models.nets.imu_transformer": [[26, "module-minerva.models.nets.imu_transformer"]], "minerva.models.nets.inception_time": [[27, "module-minerva.models.nets.inception_time"]], "minerva.models.nets.resnet_1d": [[29, "module-minerva.models.nets.resnet_1d"]], "minerva.models.nets.setr": [[30, "module-minerva.models.nets.setr"]], "minerva.models.nets.sfm": [[31, "module-minerva.models.nets.sfm"]], "minerva.models.nets.unet": [[32, "module-minerva.models.nets.unet"]], "minerva.models.nets.vit": [[33, "module-minerva.models.nets.vit"]], "minerva.models.nets.wisenet": [[34, "module-minerva.models.nets.wisenet"]], "minerva.pipelines": [[36, "module-minerva.pipelines"]], "minerva.pipelines.base": [[35, "module-minerva.pipelines.base"]], "minerva.pipelines.lightning_pipeline": [[37, "module-minerva.pipelines.lightning_pipeline"]], "minerva.transforms": [[38, "module-minerva.transforms"]], "minerva.transforms.transform": [[39, "module-minerva.transforms.transform"]], "minerva.utils": [[41, "module-minerva.utils"]], "minerva.utils.data": [[40, "module-minerva.utils.data"]], "minerva.utils.position_embedding": [[42, "module-minerva.utils.position_embedding"]], "minerva.utils.tensor": [[43, "module-minerva.utils.tensor"]], "minerva.utils.typing": [[44, "module-minerva.utils.typing"]], "minerva.utils.upsample": [[45, "module-minerva.utils.upsample"]]}, "docnames": ["api", "autoapi/minerva/analysis/index", "autoapi/minerva/analysis/metrics/index", "autoapi/minerva/analysis/metrics/pixel_accuracy/index", "autoapi/minerva/data/datasets/base/index", "autoapi/minerva/data/datasets/index", "autoapi/minerva/data/datasets/supervised_dataset/index", "autoapi/minerva/data/index", "autoapi/minerva/data/readers/csv_reader/index", "autoapi/minerva/data/readers/index", "autoapi/minerva/data/readers/patched_array_reader/index", "autoapi/minerva/data/readers/png_reader/index", "autoapi/minerva/data/readers/reader/index", "autoapi/minerva/data/readers/tabular_reader/index", "autoapi/minerva/data/readers/tiff_reader/index", "autoapi/minerva/data/readers/zarr_reader/index", "autoapi/minerva/index", "autoapi/minerva/losses/_functional/index", "autoapi/minerva/losses/dice/index", "autoapi/minerva/losses/index", "autoapi/minerva/models/index", "autoapi/minerva/models/nets/base/index", "autoapi/minerva/models/nets/cnn_ha_etal/index", "autoapi/minerva/models/nets/cnn_pf/index", "autoapi/minerva/models/nets/deep_conv_lstm/index", "autoapi/minerva/models/nets/deeplabv3/index", "autoapi/minerva/models/nets/imu_transformer/index", "autoapi/minerva/models/nets/inception_time/index", "autoapi/minerva/models/nets/index", "autoapi/minerva/models/nets/resnet_1d/index", "autoapi/minerva/models/nets/setr/index", "autoapi/minerva/models/nets/sfm/index", "autoapi/minerva/models/nets/unet/index", "autoapi/minerva/models/nets/vit/index", "autoapi/minerva/models/nets/wisenet/index", "autoapi/minerva/pipelines/base/index", "autoapi/minerva/pipelines/index", "autoapi/minerva/pipelines/lightning_pipeline/index", "autoapi/minerva/transforms/index", "autoapi/minerva/transforms/transform/index", "autoapi/minerva/utils/data/index", "autoapi/minerva/utils/index", "autoapi/minerva/utils/position_embedding/index", "autoapi/minerva/utils/tensor/index", "autoapi/minerva/utils/typing/index", "autoapi/minerva/utils/upsample/index", "contributing", "index", "installation", "modules", "notebooks/1.datasets", "notebooks/2.models", "notebooks/3.pipelines", "notebooks/4.minerva_setr_pup_pipeline", "tutorials"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api.rst", "autoapi/minerva/analysis/index.rst", "autoapi/minerva/analysis/metrics/index.rst", "autoapi/minerva/analysis/metrics/pixel_accuracy/index.rst", "autoapi/minerva/data/datasets/base/index.rst", "autoapi/minerva/data/datasets/index.rst", "autoapi/minerva/data/datasets/supervised_dataset/index.rst", "autoapi/minerva/data/index.rst", "autoapi/minerva/data/readers/csv_reader/index.rst", "autoapi/minerva/data/readers/index.rst", "autoapi/minerva/data/readers/patched_array_reader/index.rst", "autoapi/minerva/data/readers/png_reader/index.rst", "autoapi/minerva/data/readers/reader/index.rst", "autoapi/minerva/data/readers/tabular_reader/index.rst", "autoapi/minerva/data/readers/tiff_reader/index.rst", "autoapi/minerva/data/readers/zarr_reader/index.rst", "autoapi/minerva/index.rst", "autoapi/minerva/losses/_functional/index.rst", "autoapi/minerva/losses/dice/index.rst", "autoapi/minerva/losses/index.rst", "autoapi/minerva/models/index.rst", "autoapi/minerva/models/nets/base/index.rst", "autoapi/minerva/models/nets/cnn_ha_etal/index.rst", "autoapi/minerva/models/nets/cnn_pf/index.rst", "autoapi/minerva/models/nets/deep_conv_lstm/index.rst", "autoapi/minerva/models/nets/deeplabv3/index.rst", "autoapi/minerva/models/nets/imu_transformer/index.rst", "autoapi/minerva/models/nets/inception_time/index.rst", "autoapi/minerva/models/nets/index.rst", "autoapi/minerva/models/nets/resnet_1d/index.rst", "autoapi/minerva/models/nets/setr/index.rst", "autoapi/minerva/models/nets/sfm/index.rst", "autoapi/minerva/models/nets/unet/index.rst", "autoapi/minerva/models/nets/vit/index.rst", "autoapi/minerva/models/nets/wisenet/index.rst", "autoapi/minerva/pipelines/base/index.rst", "autoapi/minerva/pipelines/index.rst", "autoapi/minerva/pipelines/lightning_pipeline/index.rst", "autoapi/minerva/transforms/index.rst", "autoapi/minerva/transforms/transform/index.rst", "autoapi/minerva/utils/data/index.rst", "autoapi/minerva/utils/index.rst", "autoapi/minerva/utils/position_embedding/index.rst", "autoapi/minerva/utils/tensor/index.rst", "autoapi/minerva/utils/typing/index.rst", "autoapi/minerva/utils/upsample/index.rst", "contributing.rst", "index.rst", "installation.rst", "modules.rst", "notebooks/1.datasets.ipynb", "notebooks/2.models.ipynb", "notebooks/3.pipelines.ipynb", "notebooks/4.minerva_setr_pup_pipeline.ipynb", "tutorials.rst"], "indexentries": {"__call__() (minerva.data.datasets.base._transform method)": [[4, "minerva.data.datasets.base._Transform.__call__", false]], "__call__() (minerva.data.datasets.supervised_dataset._transform method)": [[6, "minerva.data.datasets.supervised_dataset._Transform.__call__", false]], "__call__() (minerva.transforms._transform method)": [[38, "minerva.transforms._Transform.__call__", false]], "__call__() (minerva.transforms.flip method)": [[38, "minerva.transforms.Flip.__call__", false]], "__call__() (minerva.transforms.perlinmasker method)": [[38, "minerva.transforms.PerlinMasker.__call__", false]], "__call__() (minerva.transforms.transform._transform method)": [[39, "minerva.transforms.transform._Transform.__call__", false]], "__call__() (minerva.transforms.transform.castto method)": [[39, "minerva.transforms.transform.CastTo.__call__", false]], "__call__() (minerva.transforms.transform.flip method)": [[39, "minerva.transforms.transform.Flip.__call__", false]], "__call__() (minerva.transforms.transform.padding method)": [[39, "minerva.transforms.transform.Padding.__call__", false]], "__call__() (minerva.transforms.transform.perlinmasker method)": [[39, "minerva.transforms.transform.PerlinMasker.__call__", false]], "__call__() (minerva.transforms.transform.squeeze method)": [[39, "minerva.transforms.transform.Squeeze.__call__", false]], "__call__() (minerva.transforms.transform.transformpipeline method)": [[39, "minerva.transforms.transform.TransformPipeline.__call__", false]], "__call__() (minerva.transforms.transform.unsqueeze method)": [[39, "minerva.transforms.transform.Unsqueeze.__call__", false]], "__call__() (minerva.transforms.transformpipeline method)": [[38, "minerva.transforms.TransformPipeline.__call__", false]], "__getitem__() (minerva.data.datasets.base._reader method)": [[4, "minerva.data.datasets.base._Reader.__getitem__", false]], "__getitem__() (minerva.data.datasets.base.simpledataset method)": [[4, "minerva.data.datasets.base.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.simpledataset method)": [[5, "minerva.data.datasets.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset._reader method)": [[6, "minerva.data.datasets.supervised_dataset._Reader.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset.simpledataset method)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset.supervisedreconstructiondataset method)": [[6, "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervisedreconstructiondataset method)": [[5, "minerva.data.datasets.SupervisedReconstructionDataset.__getitem__", false]], "__getitem__() (minerva.data.readers._reader method)": [[9, "minerva.data.readers._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.csv_reader.tabularreader method)": [[8, "minerva.data.readers.csv_reader.TabularReader.__getitem__", false]], "__getitem__() (minerva.data.readers.patched_array_reader._reader method)": [[10, "minerva.data.readers.patched_array_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.data.readers.png_reader._reader method)": [[11, "minerva.data.readers.png_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.png_reader.pngreader method)": [[11, "minerva.data.readers.png_reader.PNGReader.__getitem__", false]], "__getitem__() (minerva.data.readers.pngreader method)": [[9, "minerva.data.readers.PNGReader.__getitem__", false]], "__getitem__() (minerva.data.readers.reader._reader method)": [[12, "minerva.data.readers.reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tabular_reader._reader method)": [[13, "minerva.data.readers.tabular_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tabular_reader.tabularreader method)": [[13, "minerva.data.readers.tabular_reader.TabularReader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiff_reader._reader method)": [[14, "minerva.data.readers.tiff_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiff_reader.tiffreader method)": [[14, "minerva.data.readers.tiff_reader.TiffReader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiffreader method)": [[9, "minerva.data.readers.TiffReader.__getitem__", false]], "__getitem__() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.utils.data.simpledataset method)": [[40, "minerva.utils.data.SimpleDataset.__getitem__", false]], "__len__() (minerva.data.datasets.base._reader method)": [[4, "minerva.data.datasets.base._Reader.__len__", false]], "__len__() (minerva.data.datasets.base.simpledataset method)": [[4, "minerva.data.datasets.base.SimpleDataset.__len__", false]], "__len__() (minerva.data.datasets.simpledataset method)": [[5, "minerva.data.datasets.SimpleDataset.__len__", false]], "__len__() (minerva.data.datasets.supervised_dataset._reader method)": [[6, "minerva.data.datasets.supervised_dataset._Reader.__len__", false]], "__len__() (minerva.data.datasets.supervised_dataset.simpledataset method)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset.__len__", false]], "__len__() (minerva.data.readers._reader method)": [[9, "minerva.data.readers._Reader.__len__", false]], "__len__() (minerva.data.readers.csv_reader.tabularreader method)": [[8, "minerva.data.readers.csv_reader.TabularReader.__len__", false]], "__len__() (minerva.data.readers.patched_array_reader._reader method)": [[10, "minerva.data.readers.patched_array_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader.__len__", false]], "__len__() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader.__len__", false]], "__len__() (minerva.data.readers.png_reader._reader method)": [[11, "minerva.data.readers.png_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.png_reader.pngreader method)": [[11, "minerva.data.readers.png_reader.PNGReader.__len__", false]], "__len__() (minerva.data.readers.pngreader method)": [[9, "minerva.data.readers.PNGReader.__len__", false]], "__len__() (minerva.data.readers.reader._reader method)": [[12, "minerva.data.readers.reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tabular_reader._reader method)": [[13, "minerva.data.readers.tabular_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tabular_reader.tabularreader method)": [[13, "minerva.data.readers.tabular_reader.TabularReader.__len__", false]], "__len__() (minerva.data.readers.tiff_reader._reader method)": [[14, "minerva.data.readers.tiff_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tiff_reader.tiffreader method)": [[14, "minerva.data.readers.tiff_reader.TiffReader.__len__", false]], "__len__() (minerva.data.readers.tiffreader method)": [[9, "minerva.data.readers.TiffReader.__len__", false]], "__len__() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader.__len__", false]], "__len__() (minerva.utils.data.simpledataset method)": [[40, "minerva.utils.data.SimpleDataset.__len__", false]], "__repr__() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.__repr__", false]], "__repr__() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.__repr__", false]], "__str__() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.__str__", false]], "__str__() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.__str__", false]], "_calculate_conv_output_shape() (minerva.models.nets.deep_conv_lstm.convlstmcell method)": [[24, "minerva.models.nets.deep_conv_lstm.ConvLSTMCell._calculate_conv_output_shape", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_pf.cnn_pf_2d method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.deep_conv_lstm.deepconvlstm method)": [[24, "minerva.models.nets.deep_conv_lstm.DeepConvLSTM._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.imu_transformer.imucnn method)": [[26, "minerva.models.nets.imu_transformer.IMUCNN._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.inception_time.inceptiontime method)": [[27, "minerva.models.nets.inception_time.InceptionTime._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.resnet_1d.resnet1dbase method)": [[29, "minerva.models.nets.resnet_1d.ResNet1DBase._calculate_fc_input_features", false]], "_calculate_metrics() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._calculate_metrics", false]], "_compute_metrics() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel._compute_metrics", false]], "_create_backbone() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._create_backbone", false]], "_create_backbone() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._create_backbone", false]], "_create_backbone() (minerva.models.nets.deep_conv_lstm.deepconvlstm method)": [[24, "minerva.models.nets.deep_conv_lstm.DeepConvLSTM._create_backbone", false]], "_create_backbone() (minerva.models.nets.imu_transformer.imucnn method)": [[26, "minerva.models.nets.imu_transformer.IMUCNN._create_backbone", false]], "_create_backbone() (minerva.models.nets.imu_transformer.imutransformerencoder method)": [[26, "minerva.models.nets.imu_transformer.IMUTransformerEncoder._create_backbone", false]], "_create_fc() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._create_fc", false]], "_create_fc() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._create_fc", false]], "_create_fc() (minerva.models.nets.cnn_pf.cnn_pf_2d method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D._create_fc", false]], "_create_fc() (minerva.models.nets.deep_conv_lstm.deepconvlstm method)": [[24, "minerva.models.nets.deep_conv_lstm.DeepConvLSTM._create_fc", false]], "_create_fc() (minerva.models.nets.imu_transformer.imucnn method)": [[26, "minerva.models.nets.imu_transformer.IMUCNN._create_fc", false]], "_create_fc() (minerva.models.nets.imu_transformer.imutransformerencoder method)": [[26, "minerva.models.nets.imu_transformer.IMUTransformerEncoder._create_fc", false]], "_create_fc() (minerva.models.nets.inception_time.inceptiontime method)": [[27, "minerva.models.nets.inception_time.InceptionTime._create_fc", false]], "_doubleconv (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet._DoubleConv", false]], "_down (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet._Down", false]], "_encoder (class in minerva.models.nets.vit)": [[33, "minerva.models.nets.vit._Encoder", false]], "_evaluate() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._evaluate", false]], "_fit() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._fit", false]], "_generate_data() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule._generate_data", false]], "_get_patches() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader._get_patches", false]], "_get_patches() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader._get_patches", false]], "_get_patches() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader._get_patches", false]], "_imutransformerencoder (class in minerva.models.nets.imu_transformer)": [[26, "minerva.models.nets.imu_transformer._IMUTransformerEncoder", false]], "_inceptiontime (class in minerva.models.nets.inception_time)": [[27, "minerva.models.nets.inception_time._InceptionTime", false]], "_init_weights() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT._init_weights", false]], "_initialize_vars() (minerva.pipelines.base.pipeline method)": [[35, "minerva.pipelines.base.Pipeline._initialize_vars", false]], "_initialize_vars() (minerva.pipelines.lightning_pipeline.pipeline method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline._initialize_vars", false]], "_initialize_vars() (minerva.pipelines.pipeline method)": [[36, "minerva.pipelines.Pipeline._initialize_vars", false]], "_loss_func() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP._loss_func", false]], "_loss_func() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP._loss_func", false]], "_loss_func() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel._loss_func", false]], "_outconv (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet._OutConv", false]], "_pad_data() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader._pad_data", false]], "_pad_data() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader._pad_data", false]], "_pad_data() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader._pad_data", false]], "_predict() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._predict", false]], "_process_input() (minerva.models.nets.setr._visiontransformerbackbone method)": [[30, "minerva.models.nets.setr._VisionTransformerBackbone._process_input", false]], "_process_input() (minerva.models.nets.vit._visiontransformerbackbone method)": [[33, "minerva.models.nets.vit._VisionTransformerBackbone._process_input", false]], "_reader (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base._Reader", false]], "_reader (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset._Reader", false]], "_reader (class in minerva.data.readers)": [[9, "minerva.data.readers._Reader", false]], "_reader (class in minerva.data.readers.patched_array_reader)": [[10, "minerva.data.readers.patched_array_reader._Reader", false]], "_reader (class in minerva.data.readers.png_reader)": [[11, "minerva.data.readers.png_reader._Reader", false]], "_reader (class in minerva.data.readers.reader)": [[12, "minerva.data.readers.reader._Reader", false]], "_reader (class in minerva.data.readers.tabular_reader)": [[13, "minerva.data.readers.tabular_reader._Reader", false]], "_reader (class in minerva.data.readers.tiff_reader)": [[14, "minerva.data.readers.tiff_reader._Reader", false]], "_resnet1d (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d._ResNet1D", false]], "_run() (minerva.pipelines.base.pipeline method)": [[35, "minerva.pipelines.base.Pipeline._run", false]], "_run() (minerva.pipelines.lightning_pipeline.pipeline method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline._run", false]], "_run() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._run", false]], "_run() (minerva.pipelines.pipeline method)": [[36, "minerva.pipelines.Pipeline._run", false]], "_save_pipeline_info() (minerva.pipelines.base.pipeline method)": [[35, "minerva.pipelines.base.Pipeline._save_pipeline_info", false]], "_save_pipeline_info() (minerva.pipelines.lightning_pipeline.pipeline method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline._save_pipeline_info", false]], "_save_pipeline_info() (minerva.pipelines.pipeline method)": [[36, "minerva.pipelines.Pipeline._save_pipeline_info", false]], "_setr_pup (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr._SetR_PUP", false]], "_setrmlahead (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr._SETRMLAHead", false]], "_setruphead (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr._SETRUPHead", false]], "_single_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP._single_step", false]], "_single_step() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP._single_step", false]], "_single_step() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.wisenet method)": [[28, "minerva.models.nets.WiseNet._single_step", false]], "_single_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.wisenet.wisenet method)": [[34, "minerva.models.nets.wisenet.WiseNet._single_step", false]], "_test() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._test", false]], "_transform (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base._Transform", false]], "_transform (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset._Transform", false]], "_transform (class in minerva.transforms)": [[38, "minerva.transforms._Transform", false]], "_transform (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform._Transform", false]], "_unet (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet._UNet", false]], "_up (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet._Up", false]], "_visiontransformerbackbone (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr._VisionTransformerBackbone", false]], "_visiontransformerbackbone (class in minerva.models.nets.vit)": [[33, "minerva.models.nets.vit._VisionTransformerBackbone", false]], "_wisenet (class in minerva.models.nets.wisenet)": [[34, "minerva.models.nets.wisenet._WiseNet", false]], "aggregate_loss() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.aggregate_loss", false]], "binary_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.BINARY_MODE", false]], "build_model() (minerva.models.nets.inception_time._inceptiontime method)": [[27, "minerva.models.nets.inception_time._InceptionTime.build_model", false]], "build_model() (minerva.models.nets.inception_time.inceptionmodule method)": [[27, "minerva.models.nets.inception_time.InceptionModule.build_model", false]], "castto (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.CastTo", false]], "clone() (minerva.pipelines.base.pipeline static method)": [[35, "minerva.pipelines.base.Pipeline.clone", false]], "clone() (minerva.pipelines.lightning_pipeline.pipeline static method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.clone", false]], "clone() (minerva.pipelines.pipeline static method)": [[36, "minerva.pipelines.Pipeline.clone", false]], "cnn_haetal_1d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D", false]], "cnn_haetal_2d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D", false]], "cnn_pf_2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D", false]], "cnn_pf_backbone (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_Backbone", false]], "cnn_pff_2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PFF_2D", false]], "compute() (minerva.analysis.metrics.pixel_accuracy.pixelaccuracy method)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy.compute", false]], "compute() (minerva.analysis.metrics.pixelaccuracy method)": [[2, "minerva.analysis.metrics.PixelAccuracy.compute", false]], "compute_score() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.compute_score", false]], "config (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.config", false]], "config (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.config", false]], "config (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.config", false]], "configure_optimizers() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.configure_optimizers", false]], "convlstmcell (class in minerva.models.nets.deep_conv_lstm)": [[24, "minerva.models.nets.deep_conv_lstm.ConvLSTMCell", false]], "convolutionalblock (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ConvolutionalBlock", false]], "csvreader (class in minerva.data.readers.csv_reader)": [[8, "minerva.data.readers.csv_reader.CSVReader", false]], "data (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.data", false]], "deepconvlstm (class in minerva.models.nets.deep_conv_lstm)": [[24, "minerva.models.nets.deep_conv_lstm.DeepConvLSTM", false]], "deeplabv3 (class in minerva.models.nets)": [[28, "minerva.models.nets.DeepLabV3", false]], "deeplabv3 (class in minerva.models.nets.deeplabv3)": [[25, "minerva.models.nets.deeplabv3.DeepLabV3", false]], "deeplabv3_head (class in minerva.models.nets.deeplabv3)": [[25, "minerva.models.nets.deeplabv3.DeepLabV3_Head", false]], "dice_score() (in module minerva.losses._functional)": [[17, "minerva.losses._functional.dice_score", false]], "dice_score() (in module minerva.losses.dice)": [[18, "minerva.losses.dice.dice_score", false]], "diceloss (class in minerva.losses.dice)": [[18, "minerva.losses.dice.DiceLoss", false]], "flip (class in minerva.transforms)": [[38, "minerva.transforms.Flip", false]], "flip (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.Flip", false]], "forward() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.forward", false]], "forward() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.forward", false]], "forward() (minerva.models.nets.cnn_pf.cnn_pf_backbone method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_Backbone.forward", false]], "forward() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.forward", false]], "forward() (minerva.models.nets.deep_conv_lstm.convlstmcell method)": [[24, "minerva.models.nets.deep_conv_lstm.ConvLSTMCell.forward", false]], "forward() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.deeplabv3.deeplabv3_head method)": [[25, "minerva.models.nets.deeplabv3.DeepLabV3_Head.forward", false]], "forward() (minerva.models.nets.deeplabv3.resnet50backbone method)": [[25, "minerva.models.nets.deeplabv3.Resnet50Backbone.forward", false]], "forward() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.imu_transformer._imutransformerencoder method)": [[26, "minerva.models.nets.imu_transformer._IMUTransformerEncoder.forward", false]], "forward() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.inception_time._inceptiontime method)": [[27, "minerva.models.nets.inception_time._InceptionTime.forward", false]], "forward() (minerva.models.nets.inception_time.inceptionmodule method)": [[27, "minerva.models.nets.inception_time.InceptionModule.forward", false]], "forward() (minerva.models.nets.inception_time.shortcutlayer method)": [[27, "minerva.models.nets.inception_time.ShortcutLayer.forward", false]], "forward() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.resnet_1d._resnet1d method)": [[29, "minerva.models.nets.resnet_1d._ResNet1D.forward", false]], "forward() (minerva.models.nets.resnet_1d.convolutionalblock method)": [[29, "minerva.models.nets.resnet_1d.ConvolutionalBlock.forward", false]], "forward() (minerva.models.nets.resnet_1d.resnetblock method)": [[29, "minerva.models.nets.resnet_1d.ResNetBlock.forward", false]], "forward() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.resnet_1d.squeezeandexcitation1d method)": [[29, "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D.forward", false]], "forward() (minerva.models.nets.setr._setr_pup method)": [[30, "minerva.models.nets.setr._SetR_PUP.forward", false]], "forward() (minerva.models.nets.setr._setrmlahead method)": [[30, "minerva.models.nets.setr._SETRMLAHead.forward", false]], "forward() (minerva.models.nets.setr._setruphead method)": [[30, "minerva.models.nets.setr._SETRUPHead.forward", false]], "forward() (minerva.models.nets.setr._visiontransformerbackbone method)": [[30, "minerva.models.nets.setr._VisionTransformerBackbone.forward", false]], "forward() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.forward", false]], "forward() (minerva.models.nets.setr.upsample method)": [[30, "minerva.models.nets.setr.Upsample.forward", false]], "forward() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.forward", false]], "forward() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward", false]], "forward() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.unet._doubleconv method)": [[32, "minerva.models.nets.unet._DoubleConv.forward", false]], "forward() (minerva.models.nets.unet._down method)": [[32, "minerva.models.nets.unet._Down.forward", false]], "forward() (minerva.models.nets.unet._outconv method)": [[32, "minerva.models.nets.unet._OutConv.forward", false]], "forward() (minerva.models.nets.unet._unet method)": [[32, "minerva.models.nets.unet._UNet.forward", false]], "forward() (minerva.models.nets.unet._up method)": [[32, "minerva.models.nets.unet._Up.forward", false]], "forward() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.vit._encoder method)": [[33, "minerva.models.nets.vit._Encoder.forward", false]], "forward() (minerva.models.nets.vit._visiontransformerbackbone method)": [[33, "minerva.models.nets.vit._VisionTransformerBackbone.forward", false]], "forward() (minerva.models.nets.wisenet._wisenet method)": [[34, "minerva.models.nets.wisenet._WiseNet.forward", false]], "forward() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.forward", false]], "forward() (minerva.utils.upsample.upsample method)": [[45, "minerva.utils.upsample.Upsample.forward", false]], "forward_decoder() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_decoder", false]], "forward_encoder() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_encoder", false]], "forward_loss() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_loss", false]], "full_dataset_from_dataloader() (in module minerva.utils.data)": [[40, "minerva.utils.data.full_dataset_from_dataloader", false]], "full_info (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.full_info", false]], "full_info (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.full_info", false]], "full_info (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.full_info", false]], "get_1d_sincos_pos_embed_from_grid() (in module minerva.utils.position_embedding)": [[42, "minerva.utils.position_embedding.get_1d_sincos_pos_embed_from_grid", false]], "get_2d_sincos_pos_embed() (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.get_2d_sincos_pos_embed", false]], "get_2d_sincos_pos_embed() (in module minerva.utils.position_embedding)": [[42, "minerva.utils.position_embedding.get_2d_sincos_pos_embed", false]], "get_2d_sincos_pos_embed_from_grid() (in module minerva.utils.position_embedding)": [[42, "minerva.utils.position_embedding.get_2d_sincos_pos_embed_from_grid", false]], "get_full_data_split() (in module minerva.pipelines.lightning_pipeline)": [[37, "minerva.pipelines.lightning_pipeline.get_full_data_split", false]], "get_full_data_split() (in module minerva.utils.data)": [[40, "minerva.utils.data.get_full_data_split", false]], "get_split_dataloader() (in module minerva.utils.data)": [[40, "minerva.utils.data.get_split_dataloader", false]], "imucnn (class in minerva.models.nets.imu_transformer)": [[26, "minerva.models.nets.imu_transformer.IMUCNN", false]], "imutransformerencoder (class in minerva.models.nets.imu_transformer)": [[26, "minerva.models.nets.imu_transformer.IMUTransformerEncoder", false]], "inceptionmodule (class in minerva.models.nets.inception_time)": [[27, "minerva.models.nets.inception_time.InceptionModule", false]], "inceptiontime (class in minerva.models.nets.inception_time)": [[27, "minerva.models.nets.inception_time.InceptionTime", false]], "initialize_weights() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.initialize_weights", false]], "interpolate_pos_embed() (in module minerva.utils.position_embedding)": [[42, "minerva.utils.position_embedding.interpolate_pos_embed", false]], "log_dir (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.log_dir", false]], "log_dir (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.log_dir", false]], "log_dir (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.log_dir", false]], "mae_vit_base_patch16 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_base_patch16", false]], "mae_vit_base_patch16d4d256 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_base_patch16D4d256", false]], "mae_vit_huge_patch14 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_huge_patch14", false]], "mae_vit_large_patch16 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_large_patch16", false]], "mae_vit_large_patch16d4d256 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_large_patch16D4d256", false]], "mae_vit_small_patch16 (in module minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.mae_vit_small_patch16", false]], "main() (in module minerva.pipelines.lightning_pipeline)": [[37, "minerva.pipelines.lightning_pipeline.main", false]], "maskedautoencodervit (class in minerva.models.nets.sfm)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT", false]], "minerva": [[16, "module-minerva", false]], "minerva.analysis": [[1, "module-minerva.analysis", false]], "minerva.analysis.metrics": [[2, "module-minerva.analysis.metrics", false]], "minerva.analysis.metrics.pixel_accuracy": [[3, "module-minerva.analysis.metrics.pixel_accuracy", false]], "minerva.data": [[7, "module-minerva.data", false]], "minerva.data.datasets": [[5, "module-minerva.data.datasets", false]], "minerva.data.datasets.base": [[4, "module-minerva.data.datasets.base", false]], "minerva.data.datasets.supervised_dataset": [[6, "module-minerva.data.datasets.supervised_dataset", false]], "minerva.data.readers": [[9, "module-minerva.data.readers", false]], "minerva.data.readers.csv_reader": [[8, "module-minerva.data.readers.csv_reader", false]], "minerva.data.readers.patched_array_reader": [[10, "module-minerva.data.readers.patched_array_reader", false]], "minerva.data.readers.png_reader": [[11, "module-minerva.data.readers.png_reader", false]], "minerva.data.readers.reader": [[12, "module-minerva.data.readers.reader", false]], "minerva.data.readers.tabular_reader": [[13, "module-minerva.data.readers.tabular_reader", false]], "minerva.data.readers.tiff_reader": [[14, "module-minerva.data.readers.tiff_reader", false]], "minerva.data.readers.zarr_reader": [[15, "module-minerva.data.readers.zarr_reader", false]], "minerva.losses": [[19, "module-minerva.losses", false]], "minerva.losses._functional": [[17, "module-minerva.losses._functional", false]], "minerva.losses.dice": [[18, "module-minerva.losses.dice", false]], "minerva.models": [[20, "module-minerva.models", false]], "minerva.models.nets": [[28, "module-minerva.models.nets", false]], "minerva.models.nets.base": [[21, "module-minerva.models.nets.base", false]], "minerva.models.nets.cnn_ha_etal": [[22, "module-minerva.models.nets.cnn_ha_etal", false]], "minerva.models.nets.cnn_pf": [[23, "module-minerva.models.nets.cnn_pf", false]], "minerva.models.nets.deep_conv_lstm": [[24, "module-minerva.models.nets.deep_conv_lstm", false]], "minerva.models.nets.deeplabv3": [[25, "module-minerva.models.nets.deeplabv3", false]], "minerva.models.nets.imu_transformer": [[26, "module-minerva.models.nets.imu_transformer", false]], "minerva.models.nets.inception_time": [[27, "module-minerva.models.nets.inception_time", false]], "minerva.models.nets.resnet_1d": [[29, "module-minerva.models.nets.resnet_1d", false]], "minerva.models.nets.setr": [[30, "module-minerva.models.nets.setr", false]], "minerva.models.nets.sfm": [[31, "module-minerva.models.nets.sfm", false]], "minerva.models.nets.unet": [[32, "module-minerva.models.nets.unet", false]], "minerva.models.nets.vit": [[33, "module-minerva.models.nets.vit", false]], "minerva.models.nets.wisenet": [[34, "module-minerva.models.nets.wisenet", false]], "minerva.pipelines": [[36, "module-minerva.pipelines", false]], "minerva.pipelines.base": [[35, "module-minerva.pipelines.base", false]], "minerva.pipelines.lightning_pipeline": [[37, "module-minerva.pipelines.lightning_pipeline", false]], "minerva.transforms": [[38, "module-minerva.transforms", false]], "minerva.transforms.transform": [[39, "module-minerva.transforms.transform", false]], "minerva.utils": [[41, "module-minerva.utils", false]], "minerva.utils.data": [[40, "module-minerva.utils.data", false]], "minerva.utils.position_embedding": [[42, "module-minerva.utils.position_embedding", false]], "minerva.utils.tensor": [[43, "module-minerva.utils.tensor", false]], "minerva.utils.typing": [[44, "module-minerva.utils.typing", false]], "minerva.utils.upsample": [[45, "module-minerva.utils.upsample", false]], "model (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.model", false]], "module": [[1, "module-minerva.analysis", false], [2, "module-minerva.analysis.metrics", false], [3, "module-minerva.analysis.metrics.pixel_accuracy", false], [4, "module-minerva.data.datasets.base", false], [5, "module-minerva.data.datasets", false], [6, "module-minerva.data.datasets.supervised_dataset", false], [7, "module-minerva.data", false], [8, "module-minerva.data.readers.csv_reader", false], [9, "module-minerva.data.readers", false], [10, "module-minerva.data.readers.patched_array_reader", false], [11, "module-minerva.data.readers.png_reader", false], [12, "module-minerva.data.readers.reader", false], [13, "module-minerva.data.readers.tabular_reader", false], [14, "module-minerva.data.readers.tiff_reader", false], [15, "module-minerva.data.readers.zarr_reader", false], [16, "module-minerva", false], [17, "module-minerva.losses._functional", false], [18, "module-minerva.losses.dice", false], [19, "module-minerva.losses", false], [20, "module-minerva.models", false], [21, "module-minerva.models.nets.base", false], [22, "module-minerva.models.nets.cnn_ha_etal", false], [23, "module-minerva.models.nets.cnn_pf", false], [24, "module-minerva.models.nets.deep_conv_lstm", false], [25, "module-minerva.models.nets.deeplabv3", false], [26, "module-minerva.models.nets.imu_transformer", false], [27, "module-minerva.models.nets.inception_time", false], [28, "module-minerva.models.nets", false], [29, "module-minerva.models.nets.resnet_1d", false], [30, "module-minerva.models.nets.setr", false], [31, "module-minerva.models.nets.sfm", false], [32, "module-minerva.models.nets.unet", false], [33, "module-minerva.models.nets.vit", false], [34, "module-minerva.models.nets.wisenet", false], [35, "module-minerva.pipelines.base", false], [36, "module-minerva.pipelines", false], [37, "module-minerva.pipelines.lightning_pipeline", false], [38, "module-minerva.transforms", false], [39, "module-minerva.transforms.transform", false], [40, "module-minerva.utils.data", false], [41, "module-minerva.utils", false], [42, "module-minerva.utils.position_embedding", false], [43, "module-minerva.utils.tensor", false], [44, "module-minerva.utils.typing", false], [45, "module-minerva.utils.upsample", false]], "multiclass_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.MULTICLASS_MODE", false]], "multilabel_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.MULTILABEL_MODE", false]], "padding (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.Padding", false]], "patchedarrayreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PatchedArrayReader", false]], "patchedarrayreader (class in minerva.data.readers.patched_array_reader)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader", false]], "patchedarrayreader (class in minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader", false]], "patchedzarrreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PatchedZarrReader", false]], "patchedzarrreader (class in minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PatchedZarrReader", false]], "patchify() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.patchify", false]], "pathlike (in module minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PathLike", false]], "pathlike (in module minerva.pipelines.base)": [[35, "minerva.pipelines.base.PathLike", false]], "pathlike (in module minerva.pipelines.lightning_pipeline)": [[37, "minerva.pipelines.lightning_pipeline.PathLike", false]], "pathlike (in module minerva.utils.typing)": [[44, "minerva.utils.typing.PathLike", false]], "perlinmasker (class in minerva.transforms)": [[38, "minerva.transforms.PerlinMasker", false]], "perlinmasker (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.PerlinMasker", false]], "pipeline (class in minerva.pipelines)": [[36, "minerva.pipelines.Pipeline", false]], "pipeline (class in minerva.pipelines.base)": [[35, "minerva.pipelines.base.Pipeline", false]], "pipeline (class in minerva.pipelines.lightning_pipeline)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline", false]], "pipeline_id (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.pipeline_id", false]], "pipeline_id (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.pipeline_id", false]], "pipeline_id (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.pipeline_id", false]], "pipeline_info (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.pipeline_info", false]], "pipeline_info (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.pipeline_info", false]], "pipeline_info (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.pipeline_info", false]], "pixelaccuracy (class in minerva.analysis.metrics)": [[2, "minerva.analysis.metrics.PixelAccuracy", false]], "pixelaccuracy (class in minerva.analysis.metrics.pixel_accuracy)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy", false]], "pngreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PNGReader", false]], "pngreader (class in minerva.data.readers.png_reader)": [[11, "minerva.data.readers.png_reader.PNGReader", false]], "predict_dataloader() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule.predict_dataloader", false]], "predict_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.predict_step", false]], "predict_step() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.predict_step", false]], "predict_step() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.wisenet method)": [[28, "minerva.models.nets.WiseNet.predict_step", false]], "predict_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.wisenet.wisenet method)": [[34, "minerva.models.nets.wisenet.WiseNet.predict_step", false]], "random_masking() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.random_masking", false]], "randomdatamodule (class in minerva.utils.data)": [[40, "minerva.utils.data.RandomDataModule", false]], "resize() (in module minerva.models.nets.setr)": [[30, "minerva.models.nets.setr.resize", false]], "resize() (in module minerva.utils.upsample)": [[45, "minerva.utils.upsample.resize", false]], "resnet1d_8 (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNet1D_8", false]], "resnet1dbase (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNet1DBase", false]], "resnet50backbone (class in minerva.models.nets.deeplabv3)": [[25, "minerva.models.nets.deeplabv3.Resnet50Backbone", false]], "resnetblock (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNetBlock", false]], "resnetse1d_5 (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNetSE1D_5", false]], "resnetse1d_8 (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNetSE1D_8", false]], "resnetseblock (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.ResNetSEBlock", false]], "result (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.result", false]], "result (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.result", false]], "result (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.result", false]], "run() (minerva.pipelines.base.pipeline method)": [[35, "minerva.pipelines.base.Pipeline.run", false]], "run() (minerva.pipelines.lightning_pipeline.pipeline method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.run", false]], "run() (minerva.pipelines.pipeline method)": [[36, "minerva.pipelines.Pipeline.run", false]], "run_status (minerva.pipelines.base.pipeline property)": [[35, "minerva.pipelines.base.Pipeline.run_status", false]], "run_status (minerva.pipelines.lightning_pipeline.pipeline property)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.run_status", false]], "run_status (minerva.pipelines.pipeline property)": [[36, "minerva.pipelines.Pipeline.run_status", false]], "setr_pup (class in minerva.models.nets)": [[28, "minerva.models.nets.SETR_PUP", false]], "setr_pup (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr.SETR_PUP", false]], "setup() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule.setup", false]], "shortcutlayer (class in minerva.models.nets.inception_time)": [[27, "minerva.models.nets.inception_time.ShortcutLayer", false]], "simpledataset (class in minerva.data.datasets)": [[5, "minerva.data.datasets.SimpleDataset", false]], "simpledataset (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base.SimpleDataset", false]], "simpledataset (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset", false]], "simpledataset (class in minerva.utils.data)": [[40, "minerva.utils.data.SimpleDataset", false]], "simplelightningpipeline (class in minerva.pipelines.lightning_pipeline)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline", false]], "simplesupervisedmodel (class in minerva.models.nets)": [[28, "minerva.models.nets.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.base)": [[21, "minerva.models.nets.base.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.deep_conv_lstm)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.deeplabv3)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.imu_transformer)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.inception_time)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.wisenet)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel", false]], "squeeze (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.Squeeze", false]], "squeezeandexcitation1d (class in minerva.models.nets.resnet_1d)": [[29, "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D", false]], "supervisedreconstructiondataset (class in minerva.data.datasets)": [[5, "minerva.data.datasets.SupervisedReconstructionDataset", false]], "supervisedreconstructiondataset (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset", false]], "system_info() (minerva.pipelines.base.pipeline method)": [[35, "minerva.pipelines.base.Pipeline.system_info", false]], "system_info() (minerva.pipelines.lightning_pipeline.pipeline method)": [[37, "minerva.pipelines.lightning_pipeline.Pipeline.system_info", false]], "system_info() (minerva.pipelines.pipeline method)": [[36, "minerva.pipelines.Pipeline.system_info", false]], "tabularreader (class in minerva.data.readers.csv_reader)": [[8, "minerva.data.readers.csv_reader.TabularReader", false]], "tabularreader (class in minerva.data.readers.tabular_reader)": [[13, "minerva.data.readers.tabular_reader.TabularReader", false]], "test_dataloader() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule.test_dataloader", false]], "test_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.test_step", false]], "test_step() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.test_step", false]], "test_step() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.test_step", false]], "tiffreader (class in minerva.data.readers)": [[9, "minerva.data.readers.TiffReader", false]], "tiffreader (class in minerva.data.readers.tiff_reader)": [[14, "minerva.data.readers.tiff_reader.TiffReader", false]], "to_tensor() (in module minerva.losses.dice)": [[18, "minerva.losses.dice.to_tensor", false]], "to_tensor() (in module minerva.utils.tensor)": [[43, "minerva.utils.tensor.to_tensor", false]], "train_dataloader() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule.train_dataloader", false]], "trainer (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[37, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.trainer", false]], "training_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.training_step", false]], "training_step() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.training_step", false]], "training_step() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.training_step", false]], "training_step() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.training_step", false]], "transformpipeline (class in minerva.transforms)": [[38, "minerva.transforms.TransformPipeline", false]], "transformpipeline (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.TransformPipeline", false]], "unet (class in minerva.models.nets)": [[28, "minerva.models.nets.UNet", false]], "unet (class in minerva.models.nets.unet)": [[32, "minerva.models.nets.unet.UNet", false]], "unpatchify() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.unpatchify", false]], "unsqueeze (class in minerva.transforms.transform)": [[39, "minerva.transforms.transform.Unsqueeze", false]], "update() (minerva.analysis.metrics.pixel_accuracy.pixelaccuracy method)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy.update", false]], "update() (minerva.analysis.metrics.pixelaccuracy method)": [[2, "minerva.analysis.metrics.PixelAccuracy.update", false]], "upsample (class in minerva.models.nets.setr)": [[30, "minerva.models.nets.setr.Upsample", false]], "upsample (class in minerva.utils.upsample)": [[45, "minerva.utils.upsample.Upsample", false]], "val_dataloader() (minerva.utils.data.randomdatamodule method)": [[40, "minerva.utils.data.RandomDataModule.val_dataloader", false]], "validation_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.deep_conv_lstm.simplesupervisedmodel method)": [[24, "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[25, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[26, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[27, "minerva.models.nets.inception_time.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[29, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.setr.setr_pup method)": [[30, "minerva.models.nets.setr.SETR_PUP.validation_step", false]], "validation_step() (minerva.models.nets.setr_pup method)": [[28, "minerva.models.nets.SETR_PUP.validation_step", false]], "validation_step() (minerva.models.nets.sfm.maskedautoencodervit method)": [[31, "minerva.models.nets.sfm.MaskedAutoencoderViT.validation_step", false]], "validation_step() (minerva.models.nets.simplesupervisedmodel method)": [[28, "minerva.models.nets.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[32, "minerva.models.nets.unet.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[34, "minerva.models.nets.wisenet.SimpleSupervisedModel.validation_step", false]], "wisenet (class in minerva.models.nets)": [[28, "minerva.models.nets.WiseNet", false]], "wisenet (class in minerva.models.nets.wisenet)": [[34, "minerva.models.nets.wisenet.WiseNet", false]], "zeropadder2d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D", false]], "zeropadder2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D", false]]}, "objects": {"": [[16, 0, 0, "-", "minerva"]], "minerva": [[1, 0, 0, "-", "analysis"], [7, 0, 0, "-", "data"], [19, 0, 0, "-", "losses"], [20, 0, 0, "-", "models"], [36, 0, 0, "-", "pipelines"], [38, 0, 0, "-", "transforms"], [41, 0, 0, "-", "utils"]], "minerva.analysis": [[2, 0, 0, "-", "metrics"]], "minerva.analysis.metrics": [[2, 1, 1, "", "PixelAccuracy"], [3, 0, 0, "-", "pixel_accuracy"]], "minerva.analysis.metrics.PixelAccuracy": [[2, 2, 1, "", "compute"], [2, 2, 1, "", "update"]], "minerva.analysis.metrics.pixel_accuracy": [[3, 1, 1, "", "PixelAccuracy"]], "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy": [[3, 2, 1, "", "compute"], [3, 2, 1, "", "update"]], "minerva.data": [[5, 0, 0, "-", "datasets"], [9, 0, 0, "-", "readers"]], "minerva.data.datasets": [[5, 1, 1, "", "SimpleDataset"], [5, 1, 1, "", "SupervisedReconstructionDataset"], [4, 0, 0, "-", "base"], [6, 0, 0, "-", "supervised_dataset"]], "minerva.data.datasets.SimpleDataset": [[5, 2, 1, "", "__getitem__"], [5, 2, 1, "", "__len__"]], "minerva.data.datasets.SupervisedReconstructionDataset": [[5, 2, 1, "", "__getitem__"]], "minerva.data.datasets.base": [[4, 1, 1, "", "SimpleDataset"], [4, 1, 1, "", "_Reader"], [4, 1, 1, "", "_Transform"]], "minerva.data.datasets.base.SimpleDataset": [[4, 2, 1, "", "__getitem__"], [4, 2, 1, "", "__len__"]], "minerva.data.datasets.base._Reader": [[4, 2, 1, "", "__getitem__"], [4, 2, 1, "", "__len__"]], "minerva.data.datasets.base._Transform": [[4, 2, 1, "", "__call__"]], "minerva.data.datasets.supervised_dataset": [[6, 1, 1, "", "SimpleDataset"], [6, 1, 1, "", "SupervisedReconstructionDataset"], [6, 1, 1, "", "_Reader"], [6, 1, 1, "", "_Transform"]], "minerva.data.datasets.supervised_dataset.SimpleDataset": [[6, 2, 1, "", "__getitem__"], [6, 2, 1, "", "__len__"]], "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset": [[6, 2, 1, "", "__getitem__"]], "minerva.data.datasets.supervised_dataset._Reader": [[6, 2, 1, "", "__getitem__"], [6, 2, 1, "", "__len__"]], "minerva.data.datasets.supervised_dataset._Transform": [[6, 2, 1, "", "__call__"]], "minerva.data.readers": [[9, 1, 1, "", "PNGReader"], [9, 1, 1, "", "PatchedArrayReader"], [9, 1, 1, "", "PatchedZarrReader"], [9, 1, 1, "", "TiffReader"], [9, 1, 1, "", "_Reader"], [8, 0, 0, "-", "csv_reader"], [10, 0, 0, "-", "patched_array_reader"], [11, 0, 0, "-", "png_reader"], [12, 0, 0, "-", "reader"], [13, 0, 0, "-", "tabular_reader"], [14, 0, 0, "-", "tiff_reader"], [15, 0, 0, "-", "zarr_reader"]], "minerva.data.readers.PNGReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers.PatchedArrayReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"], [9, 2, 1, "", "_get_patches"], [9, 2, 1, "", "_pad_data"]], "minerva.data.readers.TiffReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers._Reader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers.csv_reader": [[8, 1, 1, "", "CSVReader"], [8, 1, 1, "", "TabularReader"]], "minerva.data.readers.csv_reader.TabularReader": [[8, 2, 1, "", "__getitem__"], [8, 2, 1, "", "__len__"]], "minerva.data.readers.patched_array_reader": [[10, 1, 1, "", "PatchedArrayReader"], [10, 1, 1, "", "_Reader"]], "minerva.data.readers.patched_array_reader.PatchedArrayReader": [[10, 2, 1, "", "__getitem__"], [10, 2, 1, "", "__len__"], [10, 2, 1, "", "_get_patches"], [10, 2, 1, "", "_pad_data"]], "minerva.data.readers.patched_array_reader._Reader": [[10, 2, 1, "", "__getitem__"], [10, 2, 1, "", "__len__"]], "minerva.data.readers.png_reader": [[11, 1, 1, "", "PNGReader"], [11, 1, 1, "", "_Reader"]], "minerva.data.readers.png_reader.PNGReader": [[11, 2, 1, "", "__getitem__"], [11, 2, 1, "", "__len__"]], "minerva.data.readers.png_reader._Reader": [[11, 2, 1, "", "__getitem__"], [11, 2, 1, "", "__len__"]], "minerva.data.readers.reader": [[12, 1, 1, "", "_Reader"]], "minerva.data.readers.reader._Reader": [[12, 2, 1, "", "__getitem__"], [12, 2, 1, "", "__len__"]], "minerva.data.readers.tabular_reader": [[13, 1, 1, "", "TabularReader"], [13, 1, 1, "", "_Reader"]], "minerva.data.readers.tabular_reader.TabularReader": [[13, 2, 1, "", "__getitem__"], [13, 2, 1, "", "__len__"]], "minerva.data.readers.tabular_reader._Reader": [[13, 2, 1, "", "__getitem__"], [13, 2, 1, "", "__len__"]], "minerva.data.readers.tiff_reader": [[14, 1, 1, "", "TiffReader"], [14, 1, 1, "", "_Reader"]], "minerva.data.readers.tiff_reader.TiffReader": [[14, 2, 1, "", "__getitem__"], [14, 2, 1, "", "__len__"]], "minerva.data.readers.tiff_reader._Reader": [[14, 2, 1, "", "__getitem__"], [14, 2, 1, "", "__len__"]], "minerva.data.readers.zarr_reader": [[15, 1, 1, "", "PatchedArrayReader"], [15, 1, 1, "", "PatchedZarrReader"], [15, 3, 1, "", "PathLike"]], "minerva.data.readers.zarr_reader.PatchedArrayReader": [[15, 2, 1, "", "__getitem__"], [15, 2, 1, "", "__len__"], [15, 2, 1, "", "_get_patches"], [15, 2, 1, "", "_pad_data"]], "minerva.losses": [[17, 0, 0, "-", "_functional"], [18, 0, 0, "-", "dice"]], "minerva.losses._functional": [[17, 4, 1, "", "dice_score"]], "minerva.losses.dice": [[18, 3, 1, "", "BINARY_MODE"], [18, 1, 1, "", "DiceLoss"], [18, 3, 1, "", "MULTICLASS_MODE"], [18, 3, 1, "", "MULTILABEL_MODE"], [18, 4, 1, "", "dice_score"], [18, 4, 1, "", "to_tensor"]], "minerva.losses.dice.DiceLoss": [[18, 2, 1, "", "aggregate_loss"], [18, 2, 1, "", "compute_score"], [18, 2, 1, "", "forward"]], "minerva.models": [[28, 0, 0, "-", "nets"]], "minerva.models.nets": [[28, 1, 1, "", "DeepLabV3"], [28, 1, 1, "", "SETR_PUP"], [28, 1, 1, "", "SimpleSupervisedModel"], [28, 1, 1, "", "UNet"], [28, 1, 1, "", "WiseNet"], [21, 0, 0, "-", "base"], [22, 0, 0, "-", "cnn_ha_etal"], [23, 0, 0, "-", "cnn_pf"], [24, 0, 0, "-", "deep_conv_lstm"], [25, 0, 0, "-", "deeplabv3"], [26, 0, 0, "-", "imu_transformer"], [27, 0, 0, "-", "inception_time"], [29, 0, 0, "-", "resnet_1d"], [30, 0, 0, "-", "setr"], [31, 0, 0, "-", "sfm"], [32, 0, 0, "-", "unet"], [33, 0, 0, "-", "vit"], [34, 0, 0, "-", "wisenet"]], "minerva.models.nets.SETR_PUP": [[28, 2, 1, "", "_compute_metrics"], [28, 2, 1, "", "_loss_func"], [28, 2, 1, "", "_single_step"], [28, 2, 1, "", "configure_optimizers"], [28, 2, 1, "", "forward"], [28, 2, 1, "", "predict_step"], [28, 2, 1, "", "test_step"], [28, 2, 1, "", "training_step"], [28, 2, 1, "", "validation_step"]], "minerva.models.nets.SimpleSupervisedModel": [[28, 2, 1, "", "_compute_metrics"], [28, 2, 1, "", "_loss_func"], [28, 2, 1, "", "_single_step"], [28, 2, 1, "", "configure_optimizers"], [28, 2, 1, "", "forward"], [28, 2, 1, "", "predict_step"], [28, 2, 1, "", "test_step"], [28, 2, 1, "", "training_step"], [28, 2, 1, "", "validation_step"]], "minerva.models.nets.WiseNet": [[28, 2, 1, "", "_single_step"], [28, 2, 1, "", "predict_step"]], "minerva.models.nets.base": [[21, 1, 1, "", "SimpleSupervisedModel"]], "minerva.models.nets.base.SimpleSupervisedModel": [[21, 2, 1, "", "_compute_metrics"], [21, 2, 1, "", "_loss_func"], [21, 2, 1, "", "_single_step"], [21, 2, 1, "", "configure_optimizers"], [21, 2, 1, "", "forward"], [21, 2, 1, "", "predict_step"], [21, 2, 1, "", "test_step"], [21, 2, 1, "", "training_step"], [21, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_ha_etal": [[22, 1, 1, "", "CNN_HaEtAl_1D"], [22, 1, 1, "", "CNN_HaEtAl_2D"], [22, 1, 1, "", "SimpleSupervisedModel"], [22, 1, 1, "", "ZeroPadder2D"]], "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D": [[22, 2, 1, "", "_calculate_fc_input_features"], [22, 2, 1, "", "_create_backbone"], [22, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D": [[22, 2, 1, "", "_calculate_fc_input_features"], [22, 2, 1, "", "_create_backbone"], [22, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel": [[22, 2, 1, "", "_compute_metrics"], [22, 2, 1, "", "_loss_func"], [22, 2, 1, "", "_single_step"], [22, 2, 1, "", "configure_optimizers"], [22, 2, 1, "", "forward"], [22, 2, 1, "", "predict_step"], [22, 2, 1, "", "test_step"], [22, 2, 1, "", "training_step"], [22, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_ha_etal.ZeroPadder2D": [[22, 2, 1, "", "__repr__"], [22, 2, 1, "", "__str__"], [22, 2, 1, "", "forward"]], "minerva.models.nets.cnn_pf": [[23, 1, 1, "", "CNN_PFF_2D"], [23, 1, 1, "", "CNN_PF_2D"], [23, 1, 1, "", "CNN_PF_Backbone"], [23, 1, 1, "", "SimpleSupervisedModel"], [23, 1, 1, "", "ZeroPadder2D"]], "minerva.models.nets.cnn_pf.CNN_PF_2D": [[23, 2, 1, "", "_calculate_fc_input_features"], [23, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_pf.CNN_PF_Backbone": [[23, 2, 1, "", "forward"]], "minerva.models.nets.cnn_pf.SimpleSupervisedModel": [[23, 2, 1, "", "_compute_metrics"], [23, 2, 1, "", "_loss_func"], [23, 2, 1, "", "_single_step"], [23, 2, 1, "", "configure_optimizers"], [23, 2, 1, "", "forward"], [23, 2, 1, "", "predict_step"], [23, 2, 1, "", "test_step"], [23, 2, 1, "", "training_step"], [23, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_pf.ZeroPadder2D": [[23, 2, 1, "", "__repr__"], [23, 2, 1, "", "__str__"], [23, 2, 1, "", "forward"]], "minerva.models.nets.deep_conv_lstm": [[24, 1, 1, "", "ConvLSTMCell"], [24, 1, 1, "", "DeepConvLSTM"], [24, 1, 1, "", "SimpleSupervisedModel"]], "minerva.models.nets.deep_conv_lstm.ConvLSTMCell": [[24, 2, 1, "", "_calculate_conv_output_shape"], [24, 2, 1, "", "forward"]], "minerva.models.nets.deep_conv_lstm.DeepConvLSTM": [[24, 2, 1, "", "_calculate_fc_input_features"], [24, 2, 1, "", "_create_backbone"], [24, 2, 1, "", "_create_fc"]], "minerva.models.nets.deep_conv_lstm.SimpleSupervisedModel": [[24, 2, 1, "", "_compute_metrics"], [24, 2, 1, "", "_loss_func"], [24, 2, 1, "", "_single_step"], [24, 2, 1, "", "configure_optimizers"], [24, 2, 1, "", "forward"], [24, 2, 1, "", "predict_step"], [24, 2, 1, "", "test_step"], [24, 2, 1, "", "training_step"], [24, 2, 1, "", "validation_step"]], "minerva.models.nets.deeplabv3": [[25, 1, 1, "", "DeepLabV3"], [25, 1, 1, "", "DeepLabV3_Head"], [25, 1, 1, "", "Resnet50Backbone"], [25, 1, 1, "", "SimpleSupervisedModel"]], "minerva.models.nets.deeplabv3.DeepLabV3_Head": [[25, 2, 1, "", "forward"]], "minerva.models.nets.deeplabv3.Resnet50Backbone": [[25, 2, 1, "", "forward"]], "minerva.models.nets.deeplabv3.SimpleSupervisedModel": [[25, 2, 1, "", "_compute_metrics"], [25, 2, 1, "", "_loss_func"], [25, 2, 1, "", "_single_step"], [25, 2, 1, "", "configure_optimizers"], [25, 2, 1, "", "forward"], [25, 2, 1, "", "predict_step"], [25, 2, 1, "", "test_step"], [25, 2, 1, "", "training_step"], [25, 2, 1, "", "validation_step"]], "minerva.models.nets.imu_transformer": [[26, 1, 1, "", "IMUCNN"], [26, 1, 1, "", "IMUTransformerEncoder"], [26, 1, 1, "", "SimpleSupervisedModel"], [26, 1, 1, "", "_IMUTransformerEncoder"]], "minerva.models.nets.imu_transformer.IMUCNN": [[26, 2, 1, "", "_calculate_fc_input_features"], [26, 2, 1, "", "_create_backbone"], [26, 2, 1, "", "_create_fc"]], "minerva.models.nets.imu_transformer.IMUTransformerEncoder": [[26, 2, 1, "", "_create_backbone"], [26, 2, 1, "", "_create_fc"]], "minerva.models.nets.imu_transformer.SimpleSupervisedModel": [[26, 2, 1, "", "_compute_metrics"], [26, 2, 1, "", "_loss_func"], [26, 2, 1, "", "_single_step"], [26, 2, 1, "", "configure_optimizers"], [26, 2, 1, "", "forward"], [26, 2, 1, "", "predict_step"], [26, 2, 1, "", "test_step"], [26, 2, 1, "", "training_step"], [26, 2, 1, "", "validation_step"]], "minerva.models.nets.imu_transformer._IMUTransformerEncoder": [[26, 2, 1, "", "forward"]], "minerva.models.nets.inception_time": [[27, 1, 1, "", "InceptionModule"], [27, 1, 1, "", "InceptionTime"], [27, 1, 1, "", "ShortcutLayer"], [27, 1, 1, "", "SimpleSupervisedModel"], [27, 1, 1, "", "_InceptionTime"]], "minerva.models.nets.inception_time.InceptionModule": [[27, 2, 1, "", "build_model"], [27, 2, 1, "", "forward"]], "minerva.models.nets.inception_time.InceptionTime": [[27, 2, 1, "", "_calculate_fc_input_features"], [27, 2, 1, "", "_create_fc"]], "minerva.models.nets.inception_time.ShortcutLayer": [[27, 2, 1, "", "forward"]], "minerva.models.nets.inception_time.SimpleSupervisedModel": [[27, 2, 1, "", "_compute_metrics"], [27, 2, 1, "", "_loss_func"], [27, 2, 1, "", "_single_step"], [27, 2, 1, "", "configure_optimizers"], [27, 2, 1, "", "forward"], [27, 2, 1, "", "predict_step"], [27, 2, 1, "", "test_step"], [27, 2, 1, "", "training_step"], [27, 2, 1, "", "validation_step"]], "minerva.models.nets.inception_time._InceptionTime": [[27, 2, 1, "", "build_model"], [27, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d": [[29, 1, 1, "", "ConvolutionalBlock"], [29, 1, 1, "", "ResNet1DBase"], [29, 1, 1, "", "ResNet1D_8"], [29, 1, 1, "", "ResNetBlock"], [29, 1, 1, "", "ResNetSE1D_5"], [29, 1, 1, "", "ResNetSE1D_8"], [29, 1, 1, "", "ResNetSEBlock"], [29, 1, 1, "", "SimpleSupervisedModel"], [29, 1, 1, "", "SqueezeAndExcitation1D"], [29, 1, 1, "", "_ResNet1D"]], "minerva.models.nets.resnet_1d.ConvolutionalBlock": [[29, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d.ResNet1DBase": [[29, 2, 1, "", "_calculate_fc_input_features"]], "minerva.models.nets.resnet_1d.ResNetBlock": [[29, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d.SimpleSupervisedModel": [[29, 2, 1, "", "_compute_metrics"], [29, 2, 1, "", "_loss_func"], [29, 2, 1, "", "_single_step"], [29, 2, 1, "", "configure_optimizers"], [29, 2, 1, "", "forward"], [29, 2, 1, "", "predict_step"], [29, 2, 1, "", "test_step"], [29, 2, 1, "", "training_step"], [29, 2, 1, "", "validation_step"]], "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D": [[29, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d._ResNet1D": [[29, 2, 1, "", "forward"]], "minerva.models.nets.setr": [[30, 1, 1, "", "SETR_PUP"], [30, 1, 1, "", "Upsample"], [30, 1, 1, "", "_SETRMLAHead"], [30, 1, 1, "", "_SETRUPHead"], [30, 1, 1, "", "_SetR_PUP"], [30, 1, 1, "", "_VisionTransformerBackbone"], [30, 4, 1, "", "resize"]], "minerva.models.nets.setr.SETR_PUP": [[30, 2, 1, "", "_compute_metrics"], [30, 2, 1, "", "_loss_func"], [30, 2, 1, "", "_single_step"], [30, 2, 1, "", "configure_optimizers"], [30, 2, 1, "", "forward"], [30, 2, 1, "", "predict_step"], [30, 2, 1, "", "test_step"], [30, 2, 1, "", "training_step"], [30, 2, 1, "", "validation_step"]], "minerva.models.nets.setr.Upsample": [[30, 2, 1, "", "forward"]], "minerva.models.nets.setr._SETRMLAHead": [[30, 2, 1, "", "forward"]], "minerva.models.nets.setr._SETRUPHead": [[30, 2, 1, "", "forward"]], "minerva.models.nets.setr._SetR_PUP": [[30, 2, 1, "", "forward"]], "minerva.models.nets.setr._VisionTransformerBackbone": [[30, 2, 1, "", "_process_input"], [30, 2, 1, "", "forward"]], "minerva.models.nets.sfm": [[31, 1, 1, "", "MaskedAutoencoderViT"], [31, 4, 1, "", "get_2d_sincos_pos_embed"], [31, 3, 1, "", "mae_vit_base_patch16"], [31, 3, 1, "", "mae_vit_base_patch16D4d256"], [31, 3, 1, "", "mae_vit_huge_patch14"], [31, 3, 1, "", "mae_vit_large_patch16"], [31, 3, 1, "", "mae_vit_large_patch16D4d256"], [31, 3, 1, "", "mae_vit_small_patch16"]], "minerva.models.nets.sfm.MaskedAutoencoderViT": [[31, 2, 1, "", "_init_weights"], [31, 2, 1, "", "configure_optimizers"], [31, 2, 1, "", "forward"], [31, 2, 1, "", "forward_decoder"], [31, 2, 1, "", "forward_encoder"], [31, 2, 1, "", "forward_loss"], [31, 2, 1, "", "initialize_weights"], [31, 2, 1, "", "patchify"], [31, 2, 1, "", "random_masking"], [31, 2, 1, "", "training_step"], [31, 2, 1, "", "unpatchify"], [31, 2, 1, "", "validation_step"]], "minerva.models.nets.unet": [[32, 1, 1, "", "SimpleSupervisedModel"], [32, 1, 1, "", "UNet"], [32, 1, 1, "", "_DoubleConv"], [32, 1, 1, "", "_Down"], [32, 1, 1, "", "_OutConv"], [32, 1, 1, "", "_UNet"], [32, 1, 1, "", "_Up"]], "minerva.models.nets.unet.SimpleSupervisedModel": [[32, 2, 1, "", "_compute_metrics"], [32, 2, 1, "", "_loss_func"], [32, 2, 1, "", "_single_step"], [32, 2, 1, "", "configure_optimizers"], [32, 2, 1, "", "forward"], [32, 2, 1, "", "predict_step"], [32, 2, 1, "", "test_step"], [32, 2, 1, "", "training_step"], [32, 2, 1, "", "validation_step"]], "minerva.models.nets.unet._DoubleConv": [[32, 2, 1, "", "forward"]], "minerva.models.nets.unet._Down": [[32, 2, 1, "", "forward"]], "minerva.models.nets.unet._OutConv": [[32, 2, 1, "", "forward"]], "minerva.models.nets.unet._UNet": [[32, 2, 1, "", "forward"]], "minerva.models.nets.unet._Up": [[32, 2, 1, "", "forward"]], "minerva.models.nets.vit": [[33, 1, 1, "", "_Encoder"], [33, 1, 1, "", "_VisionTransformerBackbone"]], "minerva.models.nets.vit._Encoder": [[33, 2, 1, "", "forward"]], "minerva.models.nets.vit._VisionTransformerBackbone": [[33, 2, 1, "", "_process_input"], [33, 2, 1, "", "forward"]], "minerva.models.nets.wisenet": [[34, 1, 1, "", "SimpleSupervisedModel"], [34, 1, 1, "", "WiseNet"], [34, 1, 1, "", "_WiseNet"]], "minerva.models.nets.wisenet.SimpleSupervisedModel": [[34, 2, 1, "", "_compute_metrics"], [34, 2, 1, "", "_loss_func"], [34, 2, 1, "", "_single_step"], [34, 2, 1, "", "configure_optimizers"], [34, 2, 1, "", "forward"], [34, 2, 1, "", "predict_step"], [34, 2, 1, "", "test_step"], [34, 2, 1, "", "training_step"], [34, 2, 1, "", "validation_step"]], "minerva.models.nets.wisenet.WiseNet": [[34, 2, 1, "", "_single_step"], [34, 2, 1, "", "predict_step"]], "minerva.models.nets.wisenet._WiseNet": [[34, 2, 1, "", "forward"]], "minerva.pipelines": [[36, 1, 1, "", "Pipeline"], [35, 0, 0, "-", "base"], [37, 0, 0, "-", "lightning_pipeline"]], "minerva.pipelines.Pipeline": [[36, 2, 1, "", "_initialize_vars"], [36, 2, 1, "", "_run"], [36, 2, 1, "", "_save_pipeline_info"], [36, 2, 1, "", "clone"], [36, 5, 1, "", "config"], [36, 5, 1, "", "full_info"], [36, 5, 1, "", "log_dir"], [36, 5, 1, "", "pipeline_id"], [36, 5, 1, "", "pipeline_info"], [36, 5, 1, "", "result"], [36, 2, 1, "", "run"], [36, 5, 1, "", "run_status"], [36, 2, 1, "", "system_info"]], "minerva.pipelines.base": [[35, 3, 1, "", "PathLike"], [35, 1, 1, "", "Pipeline"]], "minerva.pipelines.base.Pipeline": [[35, 2, 1, "", "_initialize_vars"], [35, 2, 1, "", "_run"], [35, 2, 1, "", "_save_pipeline_info"], [35, 2, 1, "", "clone"], [35, 5, 1, "", "config"], [35, 5, 1, "", "full_info"], [35, 5, 1, "", "log_dir"], [35, 5, 1, "", "pipeline_id"], [35, 5, 1, "", "pipeline_info"], [35, 5, 1, "", "result"], [35, 2, 1, "", "run"], [35, 5, 1, "", "run_status"], [35, 2, 1, "", "system_info"]], "minerva.pipelines.lightning_pipeline": [[37, 3, 1, "", "PathLike"], [37, 1, 1, "", "Pipeline"], [37, 1, 1, "", "SimpleLightningPipeline"], [37, 4, 1, "", "get_full_data_split"], [37, 4, 1, "", "main"]], "minerva.pipelines.lightning_pipeline.Pipeline": [[37, 2, 1, "", "_initialize_vars"], [37, 2, 1, "", "_run"], [37, 2, 1, "", "_save_pipeline_info"], [37, 2, 1, "", "clone"], [37, 5, 1, "", "config"], [37, 5, 1, "", "full_info"], [37, 5, 1, "", "log_dir"], [37, 5, 1, "", "pipeline_id"], [37, 5, 1, "", "pipeline_info"], [37, 5, 1, "", "result"], [37, 2, 1, "", "run"], [37, 5, 1, "", "run_status"], [37, 2, 1, "", "system_info"]], "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline": [[37, 2, 1, "", "_calculate_metrics"], [37, 2, 1, "", "_evaluate"], [37, 2, 1, "", "_fit"], [37, 2, 1, "", "_predict"], [37, 2, 1, "", "_run"], [37, 2, 1, "", "_test"], [37, 5, 1, "", "data"], [37, 5, 1, "", "model"], [37, 5, 1, "", "trainer"]], "minerva.transforms": [[38, 1, 1, "", "Flip"], [38, 1, 1, "", "PerlinMasker"], [38, 1, 1, "", "TransformPipeline"], [38, 1, 1, "", "_Transform"], [39, 0, 0, "-", "transform"]], "minerva.transforms.Flip": [[38, 2, 1, "", "__call__"]], "minerva.transforms.PerlinMasker": [[38, 2, 1, "", "__call__"]], "minerva.transforms.TransformPipeline": [[38, 2, 1, "", "__call__"]], "minerva.transforms._Transform": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform": [[39, 1, 1, "", "CastTo"], [39, 1, 1, "", "Flip"], [39, 1, 1, "", "Padding"], [39, 1, 1, "", "PerlinMasker"], [39, 1, 1, "", "Squeeze"], [39, 1, 1, "", "TransformPipeline"], [39, 1, 1, "", "Unsqueeze"], [39, 1, 1, "", "_Transform"]], "minerva.transforms.transform.CastTo": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.Flip": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.Padding": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.PerlinMasker": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.Squeeze": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.TransformPipeline": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform.Unsqueeze": [[39, 2, 1, "", "__call__"]], "minerva.transforms.transform._Transform": [[39, 2, 1, "", "__call__"]], "minerva.utils": [[40, 0, 0, "-", "data"], [42, 0, 0, "-", "position_embedding"], [43, 0, 0, "-", "tensor"], [44, 0, 0, "-", "typing"], [45, 0, 0, "-", "upsample"]], "minerva.utils.data": [[40, 1, 1, "", "RandomDataModule"], [40, 1, 1, "", "SimpleDataset"], [40, 4, 1, "", "full_dataset_from_dataloader"], [40, 4, 1, "", "get_full_data_split"], [40, 4, 1, "", "get_split_dataloader"]], "minerva.utils.data.RandomDataModule": [[40, 2, 1, "", "_generate_data"], [40, 2, 1, "", "predict_dataloader"], [40, 2, 1, "", "setup"], [40, 2, 1, "", "test_dataloader"], [40, 2, 1, "", "train_dataloader"], [40, 2, 1, "", "val_dataloader"]], "minerva.utils.data.SimpleDataset": [[40, 2, 1, "", "__getitem__"], [40, 2, 1, "", "__len__"]], "minerva.utils.position_embedding": [[42, 4, 1, "", "get_1d_sincos_pos_embed_from_grid"], [42, 4, 1, "", "get_2d_sincos_pos_embed"], [42, 4, 1, "", "get_2d_sincos_pos_embed_from_grid"], [42, 4, 1, "", "interpolate_pos_embed"]], "minerva.utils.tensor": [[43, 4, 1, "", "to_tensor"]], "minerva.utils.typing": [[44, 3, 1, "", "PathLike"]], "minerva.utils.upsample": [[45, 1, 1, "", "Upsample"], [45, 4, 1, "", "resize"]], "minerva.utils.upsample.Upsample": [[45, 2, 1, "", "forward"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "data", "Python data"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:data", "4": "py:function", "5": "py:property"}, "terms": {"": [26, 35, 36, 37, 52, 54], "0": [4, 5, 6, 9, 10, 11, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 50, 52, 53], "001": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "046317653406444": 52, "06": [30, 33], "07": [17, 18], "1": [4, 5, 6, 9, 11, 14, 18, 22, 23, 24, 26, 27, 28, 30, 31, 32, 34, 38, 39, 42, 50, 53, 54], "10": [9, 10, 15, 52], "100": [9, 10, 15, 52], "1000": [28, 30, 33], "1024": [28, 30, 31], "108": 53, "10x10": [9, 10, 15], "11929": [30, 33], "128": [26, 30, 40], "14": [28, 30], "1411764705882353": 53, "1568627450980392": 53, "16": [23, 28, 30, 31], "1678915": 52, "1715128966": 52, "18": [28, 32], "18th": [28, 32], "19": [28, 30], "1d": [8, 13], "1e": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "2": [4, 5, 6, 9, 10, 11, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 50, 51, 53, 54], "20": [9, 10, 15], "2010": [30, 33], "2015": [28, 32], "2017": [25, 28], "21": [9, 10, 15], "22": [9, 10, 15], "224": 31, "23": [9, 10, 15], "24": [9, 10, 15, 28, 30, 31], "25": 52, "256": [28, 30, 53], "281": 53, "29411764705882354": 53, "3": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 50, 53, 54], "30": [9, 10, 15], "31": [9, 10, 15], "32": [9, 10, 15, 27], "320": 53, "33": [9, 10, 15], "34": [9, 10, 15], "382": 53, "4": [9, 10, 15, 28, 30, 31, 37, 50, 53, 54], "40": [9, 10, 15], "4096": [28, 30], "41": [9, 10, 15, 27], "42": [9, 10, 15], "43": [9, 10, 15], "4392156862745098": 53, "44": [9, 10, 15], "4666666666666667": 53, "47058823529411764": 53, "5": [9, 10, 15, 28, 29, 32, 53, 54], "50": [9, 10, 15], "51": [9, 10, 15], "512": [28, 30, 31], "52": [9, 10, 15], "53": [9, 10, 15], "54": [9, 10, 15], "5882352941176471": 53, "5x5": [9, 10, 15], "6": [9, 10, 15, 22, 23, 24, 26, 27, 29, 30, 33, 53, 54], "60": [9, 10, 15, 22, 23, 24, 26, 27, 29], "61": [9, 10, 15], "62": [9, 10, 15], "63": [9, 10, 15], "64": [9, 10, 15, 26, 29], "7": [18, 53], "704": 53, "7333333333333333": 53, "75": 31, "7607843137254902": 53, "8": [26, 31, 40], "8470588235294118": 53, "8666666666666667": 53, "8745098039215686": 53, "8901960784313725": 53, "9": [28, 30, 32], "91": 52, "9607843137254902": 53, "9647058823529412": 53, "9764705882352941": 53, "9803921568627451": 53, "A": [4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 38, 39, 47, 50, 54], "And": 52, "By": [9, 10, 15, 18, 35, 36, 37, 50], "For": [4, 5, 6, 52], "If": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39], "In": [5, 6, 50, 52], "It": [4, 5, 6, 9, 10, 11, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37], "NOT": 52, "No": [4, 5, 6], "One": [38, 39], "Or": 52, "That": [4, 5, 6], "The": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 50, 52, 54], "These": 52, "To": [48, 50], "__call__": [0, 4, 6, 38, 39, 53], "__getitem__": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 40, 50], "__init__": [35, 36, 37, 52, 53], "__len__": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 40, 50], "__repr__": [0, 22, 23], "__str__": [0, 22, 23], "_calculate_conv_output_shap": [0, 24], "_calculate_fc_input_featur": [0, 22, 23, 24, 26, 27, 29], "_calculate_metr": [0, 37], "_compute_metr": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "_create_backbon": [0, 22, 24, 26], "_create_fc": [0, 22, 23, 24, 26, 27], "_doubleconv": [0, 32], "_down": [0, 32], "_encod": [0, 33], "_end": 52, "_evalu": [0, 37], "_fit": [0, 37], "_function": [0, 19], "_generate_data": [0, 40], "_get_patch": [0, 9, 10, 15], "_imutransformerencod": [0, 26], "_inceptiontim": [0, 27], "_init_weight": [0, 31], "_initialize_var": [0, 35, 36, 37], "_loss": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "_loss_func": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "_outconv": [0, 32], "_pad_data": [0, 9, 10, 15], "_predict": [0, 37], "_process_input": [0, 30, 33], "_reader": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "_resnet1d": [0, 29], "_result": 52, "_run": [0, 35, 36, 37, 52], "_save_pipeline_info": [0, 35, 36, 37], "_seed": 52, "_setr_pup": [0, 30, 53], "_setrmlahead": [0, 30], "_setruphead": [0, 30], "_single_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "_start": 52, "_test": [0, 37], "_transform": [0, 4, 5, 6, 38, 39, 53], "_type_": 26, "_unet": [0, 28, 32], "_up": [0, 32], "_visiontransformerbackbon": [0, 30, 33], "_wisenet": [0, 34], "ab": [30, 33], "abl": 37, "about": [35, 36, 37], "abstract": [4, 6, 9, 10, 11, 12, 13, 14, 25, 35, 36, 37, 38, 39, 50], "acceler": 53, "access": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 35, 36, 37, 50, 52], "accord": [38, 39], "accuraci": [2, 3], "achiev": 50, "across": [2, 3], "activ": [26, 28, 30, 52], "activation_cl": 29, "actual": [28, 32], "ad": [39, 50], "adam": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "adapt": 50, "add": [39, 52], "addit": [4, 6, 9, 10, 15, 25, 28, 32, 38, 39], "addition": 52, "ae87a62731c04604bb35c0b9d4626982": 52, "after": [22, 23, 24, 27, 29, 35, 36, 37, 52], "aggregate_loss": [0, 18], "aggret": 30, "aid": 52, "algorithm": 50, "align": [28, 30], "align_corn": [28, 30, 45], "all": [4, 5, 6, 9, 15, 18, 35, 36, 37, 38, 39, 52], "allow": [28, 32, 35, 36, 37, 52], "along": [38, 39], "also": [28, 32, 50, 52], "alter": 52, "alwai": [18, 50], "an": [4, 6, 8, 9, 10, 11, 12, 13, 14, 28, 30, 32, 33, 37, 38, 39, 50, 52], "analysi": [0, 16], "ani": [4, 5, 6, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39], "annot": 53, "annotation_path": 53, "annotations_path": 53, "anyth": [4, 6, 38, 39], "api": [17, 35, 36, 37, 52], "append": [4, 5, 6], "appli": [4, 5, 6, 9, 10, 15, 30, 33, 37, 38, 39, 50], "applic": [28, 32], "apply_metrics_per_sampl": 37, "applyi": [4, 6, 38, 39], "approach": 50, "ar": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 38, 39, 50, 52], "arang": [9, 10, 15], "arbitrari": [28, 32], "architectur": [28, 32], "arg": [4, 6, 9, 15, 23, 29, 30, 31, 33, 35, 36, 37, 38, 39, 52], "argmax": [37, 53], "argument": [9, 10, 15, 25, 28, 32, 37, 52], "arrai": [5, 6, 8, 9, 10, 11, 13, 14, 15, 39, 50], "arraylik": [9, 10, 15], "arxiv": [30, 33], "as_posit": 52, "assembli": 32, "assertionerror": [5, 6, 18, 30], "assign": 52, "assist": [28, 32], "assum": [9, 11, 14, 18, 30, 33], "assumpt": [9, 10, 15], "atrou": [25, 28], "attent": [26, 28, 30, 31, 33], "attention_dropout": [30, 33], "attibut": [35, 36, 37], "attribut": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 36, 52], "autoencod": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 51], "autom": [35, 36, 37, 52], "aux_output": [28, 30, 33], "aux_output_lay": [28, 30, 33], "aux_weight": [28, 30], "auxiliari": [28, 30], "avail": [35, 36, 37, 53], "avoid": [18, 35, 36, 37, 52], "axi": [38, 39, 53], "b": 26, "backbon": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 51], "base": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 45, 51, 52], "basic": [35, 36, 37], "batch": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "batch_idx": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "batch_siz": [40, 53], "befor": [9, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 52], "being": [18, 30, 33, 35, 36, 37], "below": [9, 11, 14, 52], "besid": 52, "best": 52, "between": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 50, 51, 52], "bilinear": [28, 30, 32], "binari": [18, 31, 50], "binary_mod": [0, 18], "biomed": [28, 32], "block": 31, "bn": 32, "bool": [2, 3, 4, 5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], "both": [5, 6], "bottleneck_s": 27, "brox": [28, 32], "build": 53, "build_model": [0, 27], "c": [26, 28, 31, 32, 50], "cach": [35, 36, 37, 52], "cache_result": [35, 36, 37, 52], "calcul": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 52], "call": [35, 36, 37, 50, 52], "callabl": [30, 33], "can": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 35, 36, 37, 38, 39, 48, 50, 52], "case": [4, 5, 6, 50], "cast": [8, 13, 39], "cast_to": [8, 13], "castto": [0, 39], "chang": [8, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51], "channel": [18, 26, 28, 30, 31, 32], "check": [9, 10, 15], "checkpoint": 37, "checkpoint_model": 42, "chen": [25, 28], "chieh": [25, 28], "ckpt_path": 37, "clariti": 50, "class": [0, 52, 53, 54], "class_path": 52, "classif": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 50], "classification_metr": 37, "clean": 52, "cli": [37, 54], "clonabl": 54, "clonal": [35, 36, 37], "clone": [0, 35, 36, 37, 52], "cloneabl": 52, "cloned_pipelin": 52, "cls_token": [31, 42], "cluster": 52, "cmap": 53, "cnn_ha_et": [0, 28], "cnn_haetal_1d": [0, 22], "cnn_haetal_2d": [0, 22], "cnn_pf": [0, 28], "cnn_pf_2d": [0, 23], "cnn_pf_backbon": [0, 23], "cnn_pff_2d": [0, 23], "code": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51, 52], "coeffici": 18, "collect": [4, 6, 8, 9, 10, 11, 12, 13, 14, 50], "color": 53, "column": [8, 13, 30, 33, 50], "columns_to_select": [8, 13], "com": 31, "combin": 52, "command": 52, "common": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51, 52], "complet": [32, 52], "complex": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51, 52], "compon": 52, "compos": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51, 52], "composit": 54, "comprehens": 52, "comput": [0, 2, 3, 9, 10, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 51, 52], "compute_scor": [0, 18], "concaten": [28, 32], "confer": [28, 32], "config": [0, 35, 36, 37, 52, 54], "configur": [30, 31, 33, 35, 36, 37, 52], "configure_optim": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "connect": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "consecut": [9, 10, 15], "consid": [8, 13, 50, 51, 52], "consist": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 52], "constant": [9, 10, 15, 18, 52], "construct": 46, "constructor": 52, "contain": [5, 6, 9, 11, 31, 37], "content": 0, "contract": [28, 32], "contribut": 18, "conv": 32, "conv_act": [28, 30], "conv_norm": [28, 30], "conv_stem_config": [30, 33], "convert": 50, "convlstmcel": [0, 24], "convolut": [22, 23, 24, 25, 27, 28, 29, 30, 32, 33], "convolutionalblock": [0, 29], "convstemconfig": [30, 33], "coordin": [9, 10, 15], "copi": 52, "copyi": [35, 36, 37], "core": [35, 36, 37, 53], "corner": [9, 10, 15, 28, 30], "correspond": [4, 5, 6, 31, 50], "count": [35, 36, 37, 52], "cpu_count": 53, "creat": [4, 5, 6, 9, 10, 15, 35, 36, 37, 52], "creation": [35, 36, 37, 52], "crossentropyloss": 53, "csv": 50, "csv_reader": [0, 9], "csvreader": [0, 8], "cuda": 53, "cuda_visible_devic": 53, "current": [31, 35, 36, 37], "cxhxw": 50, "d": [31, 42, 50], "data": [0, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 38, 39, 41, 47, 51, 54], "data_modul": [37, 40, 53], "data_path": [9, 15], "data_shap": [8, 9, 10, 13, 15, 40], "datafram": [8, 13], "dataload": [40, 53], "dataloader_idx": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "dataset": [0, 7, 37, 47, 53, 54], "decod": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "decoder_channel": [28, 30], "decoder_depth": 31, "decoder_dropout": [28, 30], "decoder_embed_dim": 31, "decoder_num_head": 31, "deep": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 51, 52], "deep_conv_lstm": [0, 28], "deepconvlstm": [0, 24], "deeplabv3": [0, 28], "deeplabv3_head": [0, 25], "def": [52, 53], "default": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39], "defin": [4, 6, 8, 9, 10, 11, 12, 13, 14, 38, 39, 50], "definit": [4, 6, 8, 9, 10, 11, 12, 13, 14, 54], "deit": 31, "demonstr": 52, "denomin": 18, "depend": 50, "deploy": 52, "depth": [27, 31], "deriv": [35, 36, 37], "design": [9, 10, 15, 50, 52], "desir": [35, 36, 37], "detail": [38, 39], "detect": [5, 6], "devic": [50, 53], "df": [8, 13], "dice": [0, 19], "dice_coeff": 18, "dice_scor": [0, 17, 18], "diceloss": [0, 18], "dict": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37], "dictionari": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 50, 52], "differ": [4, 5, 6, 37, 50], "dim": [17, 18, 53], "dim_feedforward": 26, "dimens": [9, 10, 15, 26, 28, 30, 31, 33, 38, 39, 42], "dimension": [30, 33, 39, 50], "directli": [35, 36, 37, 52], "directori": [9, 11, 14, 35, 36, 37, 50, 52, 53], "disk": [9, 15], "dist_sync_on_step": [2, 3], "distanc": 52, "distance_pipelin": 52, "distribut": 54, "divis": 18, "do": [35, 36, 37], "doc": 53, "document": [9, 10, 15], "doe": [4, 6, 9, 11, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 51], "doesn": 52, "domain": 50, "doubl": 32, "downscal": 32, "dropout": [26, 28, 30, 33], "dropout_factor": 26, "dtype": [18, 39, 43], "duplic": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "dure": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 52], "e": [28, 32, 50, 51], "each": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 42, 50, 52], "easi": 52, "easier": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "effect": 52, "effici": [35, 36, 37, 52], "either": [28, 30], "element": [5, 6, 9, 11, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 50, 51, 52, 53], "elif": 53, "ellipsi": [4, 5, 6, 8, 9, 10, 13, 15, 30, 33, 40], "els": 53, "embed": 31, "embed_dim": [31, 42], "enabl": 52, "encapsul": 52, "encod": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 42], "encode_posit": 26, "encoder_dropout": [28, 30], "end": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 52], "end_tim": 52, "enhanc": 52, "ensur": [50, 52], "entir": [9, 15], "entri": [35, 36, 37, 38, 39], "environ": [35, 36, 37, 54], "ep": [17, 18, 30, 33], "epoch": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "epsilon": [18, 30, 33], "equal": [8, 13, 18], "error": 18, "essenti": 52, "estim": 53, "etc": [4, 6, 8, 9, 10, 11, 12, 13, 14, 50], "evalu": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37], "even": 50, "everi": 50, "everyth": [35, 36, 37], "exactli": [5, 6], "exampl": [47, 52, 54], "except": [35, 36, 37], "exception_info": 52, "exclus": 52, "execut": [35, 36, 37, 52], "exist": [9, 11, 14, 52], "expand_dim": 53, "expans": [28, 32], "expect": [9, 10, 15, 28, 32], "experi": [35, 36, 37], "expos": [35, 36, 37], "express": [8, 13], "extract": [9, 10, 15, 31, 50], "f": [52, 53], "f3": 53, "f3_segment": 53, "f3datamodul": 53, "facebookresearch": 31, "facilit": 52, "factor": [28, 30], "fals": [2, 3, 4, 5, 6, 18, 23, 28, 30, 31, 32, 33, 35, 36, 37, 42, 52, 53], "fanci": [4, 6, 38, 39], "faster": 52, "fc": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "featur": [22, 23, 24, 27, 28, 29, 30, 32, 52], "feed": [30, 33], "feedforward": 26, "fetch": [9, 10, 15, 50], "file": [9, 11, 14, 35, 36, 37, 50, 52, 53], "filenam": [9, 11, 14], "first": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51], "fischer": [28, 32], "fit": [9, 15, 37, 53], "fix": [9, 10, 15], "flatten": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "flexibl": [50, 52], "flip": [0, 38, 39], "float": [2, 3, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 52, 53], "florian": [25, 28], "follow": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51, 52], "form": 32, "format": [50, 51], "forward": [0, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 45, 51], "forward_decod": [0, 31], "forward_encod": [0, 31], "forward_loss": [0, 31], "framework": 53, "from": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 50, 51, 52, 53], "from_logit": 18, "from_numpi": 53, "full": 32, "full_dataset_from_dataload": [0, 40], "full_info": [0, 35, 36, 37], "fulli": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "function": [0, 4, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39], "g": [28, 32, 50, 51], "gelu": 26, "gener": [4, 5, 6, 9, 10, 15, 35, 36, 37, 38, 39, 50, 52, 54], "georg": [25, 28], "germani": [28, 32], "get": [4, 6, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37], "get_1d_sincos_pos_embed_from_grid": [0, 42], "get_2d_sincos_pos_emb": [0, 31, 42], "get_2d_sincos_pos_embed_from_grid": [0, 42], "get_full_data_split": [0, 37, 40], "get_split_dataload": [0, 40], "git": [35, 36, 37], "github": 31, "given": [9, 11, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 38, 39], "gpu": 53, "grayscal": 32, "greater": 18, "grid": [31, 42], "grid_siz": [31, 42], "guid": 47, "h": [28, 31, 32, 53], "ha": [28, 32], "handl": [4, 6, 8, 9, 10, 11, 12, 13, 14, 28, 32, 35, 36, 37, 50], "har": 50, "hartwig": [25, 28], "have": [4, 5, 6, 8, 9, 10, 13, 15, 35, 36, 37, 38, 39, 50, 52], "head": [26, 28, 30, 31, 33], "height": [28, 30, 31, 32, 33, 42], "henc": [35, 36, 37], "here": [0, 52], "hidden": [28, 30, 31, 33], "hidden_dim": [26, 28, 30, 33], "host": [35, 36, 37], "how": 54, "howev": [4, 6, 38, 39, 50], "hparam": 52, "hpu": 53, "http": [30, 31, 33], "hyperparametersmixin": [35, 36, 37], "i": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 50, 51, 52, 53], "id": [35, 36, 37, 52], "ident": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "identif": 52, "identifi": 52, "ids_restor": 31, "idx": [4, 5, 6, 9, 10, 15, 40], "ignor": [18, 35, 36, 37, 52], "ignore_index": 18, "iii": [28, 32], "imag": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 25, 28, 30, 31, 32, 33, 53], "image_": 50, "image_1": 50, "image_i": 50, "image_read": [4, 5, 6], "image_s": [28, 30, 33, 53], "image_transform": [4, 5, 6], "imageread": [4, 5, 6], "imagetransform": [4, 5, 6], "img": 31, "img_siz": 31, "implement": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 38, 39, 51, 52], "import": [4, 5, 6, 9, 10, 15, 53], "imshow": 53, "imu_transform": [0, 28], "imucnn": [0, 26], "imutransformerencod": [0, 26], "in_chan": 31, "in_channel": [28, 29, 30, 32, 34], "inception_tim": [0, 28], "inceptionmodul": [0, 27], "inceptiontim": [0, 27], "includ": [18, 28, 30, 35, 36, 37], "include_middl": 23, "independ": 52, "index": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 47, 50], "indic": [9, 10, 15, 18, 28, 30, 31, 50], "infer": 37, "inform": [4, 6, 9, 10, 15, 28, 32, 35, 36, 37, 38, 39], "inherit": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 51], "init_arg": 52, "initi": [2, 3, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 52], "initialize_weight": [0, 31], "input": [4, 5, 6, 9, 10, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 45, 51, 53], "input_featur": [22, 23, 24, 26, 27], "input_shap": [22, 23, 24, 26, 27, 29], "input_tensor": [27, 29], "input_tensor_shap": 27, "insid": [35, 36, 37], "insight": 52, "instal": 47, "instanc": 52, "instead": [9, 15], "int": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 42, 52, 53], "integ": [9, 10, 15, 38, 39, 50], "integr": [37, 54], "intend": 37, "interfac": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 52], "intern": [28, 32, 35, 36, 37], "interpol": [28, 30, 32], "interpolate_mod": [28, 30], "interpolate_pos_emb": [0, 42], "intervent": [28, 32], "invalid": 53, "ipu": 53, "item": [4, 6, 8, 9, 10, 11, 12, 13, 14, 52], "its": [9, 10, 15], "jaccardindex": 53, "jpg": 50, "jsonargpars": [37, 52], "just": [4, 6, 38, 39], "keep": [35, 36, 37], "kei": [37, 52, 54], "kernel": [28, 30], "kernel_s": [27, 28, 30], "keyword": [9, 10, 15], "kwarg": [4, 6, 9, 10, 15, 23, 25, 28, 29, 32, 34, 35, 36, 37, 38, 39], "l": [31, 37, 53], "label": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 40, 50, 51], "label_cmap": 53, "label_read": [4, 5, 6], "label_shap": 40, "label_transform": [4, 5, 6], "labelread": [4, 5, 6], "labeltransform": [4, 5, 6], "larg": [9, 15, 35, 36, 37, 52], "large_param": 52, "last": [35, 36, 37], "layer": [22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33], "layernorm": [30, 31, 33], "learn": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51], "learning_r": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "left": [9, 10, 15], "len": [9, 10, 15, 53], "length": [4, 5, 6, 9, 10, 11, 12, 13, 14, 26, 38, 39, 50], "less": [38, 39], "level": [30, 38, 39, 51], "leverag": 52, "liang": [25, 28], "lightn": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 40, 51, 53], "lightning_log": 53, "lightning_pipelin": [0, 36, 53], "lightningdatamodul": [37, 40, 53], "lightningmodul": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37], "like": [9, 10, 15, 37], "line": 52, "list": [4, 5, 6, 8, 9, 10, 13, 15, 18, 22, 23, 28, 30, 33, 35, 36, 37, 38, 39, 42, 50, 52], "listedcolormap": 53, "liter": 37, "load": [4, 5, 6, 9, 11, 14, 15, 50], "local_rank": 53, "log": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 53, 54], "log_dir": [0, 35, 36, 37], "log_loss": 18, "logger": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "logic": [4, 6, 35, 36, 37, 38, 39, 52], "logit": 18, "loop": [28, 30], "loss": [0, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 51], "loss_fn": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 53], "m": [31, 42, 53], "mae_vit_base_patch16": [0, 31], "mae_vit_base_patch16d4d256": [0, 31], "mae_vit_huge_patch14": [0, 31], "mae_vit_large_patch16": [0, 31], "mae_vit_large_patch16d4d256": [0, 31], "mae_vit_small_patch16": [0, 31], "mai": [35, 36, 37], "main": [0, 37], "mainli": 50, "maintain": 52, "make": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51, 53], "mani": 50, "manner": 52, "map": [5, 6, 28, 32, 50], "mask": [5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 50, 51, 53], "mask_": 50, "mask_1": 50, "mask_i": 50, "mask_ratio": 31, "mask_read": [5, 6], "maskedautoencodervit": [0, 31], "master": 31, "match": [8, 13], "matplotlib": 53, "max": [28, 32, 53], "max_epoch": 53, "maxpool": 32, "mb": 53, "mean": [35, 36, 37], "medic": [28, 32], "memori": [9, 15], "method": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 38, 39, 50, 52], "metric": [0, 1, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37], "miccai": [28, 32], "mid_channel": 32, "middl": 32, "minerva": [0, 48, 51, 54], "minim": 52, "miou": 53, "mixin": [35, 36, 37], "mla": 30, "mla_channel": 30, "mlp": [28, 30, 31, 33], "mlp_dim": [28, 30, 33], "mlp_ratio": 31, "mode": [9, 10, 15, 18, 28, 30, 45, 53], "model": [0, 16, 37, 42, 47, 50, 54], "modifi": [35, 36, 37, 50], "modul": [0, 28, 47, 50, 51, 54], "modular": 52, "monitor": 54, "more": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 50, 51], "mseloss": [25, 28, 32], "multi": 30, "multiclass": [18, 53], "multiclass_mod": [0, 18], "multilabel": 18, "multilabel_mod": [0, 18], "multipl": [4, 5, 6, 28, 32, 35, 36, 37, 52], "munich": [28, 32], "must": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 50, 51], "n": [28, 31, 32, 50], "n_channel": [28, 32], "naiv": 30, "name": [8, 9, 11, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 53], "nb_filter": 27, "ndarrai": [5, 6, 8, 9, 10, 11, 13, 14, 15, 38, 39, 53], "nearest": [30, 45], "need": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "net": [0, 20, 51, 53], "network": [22, 23, 24, 26, 27, 28, 29, 30, 32], "neural": [28, 32], "new": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 39, 50, 51], "newsize1": 42, "newsize2": 42, "nhead": 26, "nn": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 45], "nois": [38, 39], "non": [52, 53], "none": [4, 5, 6, 8, 9, 10, 13, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 40, 42, 43, 45, 52, 53], "norm": 52, "norm_lay": [28, 30, 31, 33], "norm_pix_loss": 31, "normal": [28, 30, 31, 33, 50], "note": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51, 52], "notebook": 53, "np": [5, 6, 8, 9, 10, 11, 13, 14, 15, 38, 39, 52, 53], "npy": 50, "num_class": [22, 23, 24, 26, 27, 28, 29, 30, 33, 40, 53], "num_conv": [28, 30], "num_encoder_lay": 26, "num_head": [28, 30, 31, 33], "num_lay": [28, 30, 33], "num_patch": 31, "num_predict_sampl": 40, "num_residual_block": 29, "num_sampl": 40, "num_test_sampl": 40, "num_train_sampl": 40, "num_val_sampl": 40, "num_work": 53, "number": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 50], "numer": 18, "numpi": [5, 6, 8, 9, 10, 11, 13, 14, 15, 38, 39, 50, 53], "o": [31, 42, 53], "object": [2, 3, 5, 6, 35, 36, 37], "observ": 50, "occur": [35, 36, 37], "octav": [38, 39], "octob": [28, 32], "offer": 52, "olaf": [28, 32], "one": 18, "ones": [4, 5, 6, 35, 36, 37, 52], "onli": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 51, 52], "oper": [4, 6, 38, 39], "optim": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 51], "option": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 50], "order": [4, 6, 8, 9, 10, 11, 12, 13, 14, 31, 38, 39, 50], "org": [30, 33], "organ": [50, 52], "origin": [5, 6, 28, 31, 32, 35, 36, 37], "other": [9, 10, 15, 35, 36, 37, 50, 52], "otherwis": 37, "our": 54, "out": 42, "out_channel": [23, 28, 30, 32, 34], "out_tensor_shap": 27, "output": [4, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 42, 51, 52], "output_tensor": 27, "over": [4, 6, 38, 39], "overlap": [9, 10, 15], "overrid": 52, "overridden": [4, 6, 38, 39], "own": 52, "packag": 0, "pad": [0, 9, 10, 15, 39, 53], "pad_at": [22, 23], "pad_h": 53, "pad_kwarg": [9, 10, 15], "pad_mod": [9, 10, 15], "pad_w": 53, "pad_width": [9, 10, 15], "padding_s": [22, 23], "page": 47, "pair": [5, 6], "panda": [8, 13], "papandr": [25, 28], "parallel": 54, "param": 53, "paramet": [17, 40, 51, 52], "parent": [9, 15], "part": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "partial": [30, 33], "pass": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 51, 52], "patch": [9, 10, 15, 28, 30, 31, 33], "patch_siz": [28, 30, 31, 33], "patched_array_read": [0, 9, 15], "patchedarrayread": [0, 9, 10, 15], "patchedzarrread": [0, 9, 15], "patchifi": [0, 31], "path": [4, 5, 6, 8, 9, 11, 14, 15, 28, 32, 35, 36, 37, 53], "pathlib": [9, 11, 15, 35, 36, 37, 53], "pathlik": [0, 9, 15, 35, 36, 37, 44], "pattern": [8, 13], "pd": [8, 13], "per": [30, 31, 33, 37], "perform": [4, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 38, 39, 52], "perlin": [38, 39], "perlinmask": [0, 38, 39], "philipp": [28, 32], "piec": 50, "pip": 47, "pipelin": [0, 4, 5, 6, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 47, 51, 54], "pipeline_id": [0, 35, 36, 37, 52], "pipeline_info": [0, 35, 36, 37], "pixel": [2, 3, 18, 31, 50], "pixel_accuraci": [0, 2], "pixelaccuraci": [0, 2, 3], "pleas": [9, 15], "plt": 53, "png": [9, 11, 50, 53], "png_reader": [0, 9, 53], "pngreader": [0, 9, 11, 53], "po": 42, "point": [35, 36, 37, 52], "pool": [28, 32], "pos_emb": [31, 42], "posit": [26, 39, 42], "position_embed": [0, 41], "possibl": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "practic": 52, "pred": [2, 3, 31, 53], "predefin": 50, "predict": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 53], "predict_dataload": [0, 37, 40, 53], "predict_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34], "predict_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "prefix": 50, "preprocess": 50, "primarili": [4, 6, 8, 9, 10, 11, 12, 13, 14], "print": [9, 10, 15, 52], "probabl": 18, "proceed": [28, 32], "process": [2, 3, 30, 33, 52], "produc": 32, "program": 47, "progress": 30, "properti": [35, 36, 37, 52], "propos": [28, 32], "provid": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 30, 33, 35, 36, 37, 38, 39, 52], "public": [35, 36, 37, 52], "publish": [28, 32], "pup": 30, "py": 52, "pyplot": 53, "python": [4, 5, 6, 9, 10, 15, 35, 36, 37, 52], "pytorch": [31, 35, 36, 37, 50], "queri": 50, "quit": [35, 36, 37], "r": [4, 5, 6], "rais": 53, "randint": [38, 39, 52], "random": [22, 23, 24, 27, 29, 31, 52], "random_mask": [0, 31], "randomdatamodul": [0, 40], "rang": 50, "rate": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34], "ratio": 31, "raw": 18, "read": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 35, 36, 37, 50, 52], "reader": [0, 4, 5, 6, 7, 47, 53, 54], "real": 50, "receiv": [35, 36, 37], "recommend": [9, 15], "recomput": [35, 36, 37], "reconstruct": [5, 6, 28, 31, 32, 50], "record": 52, "reduc": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "reduct": 50, "reduction_ratio": 29, "refer": [9, 15, 31, 47], "reflect": 53, "regress": [37, 50], "regression_metr": 37, "regular": [8, 13], "relat": [4, 5, 6, 35, 36, 37, 47, 54], "relationship": 50, "relu": [29, 32], "remain": 50, "remov": 39, "repeat": [28, 32], "repositori": [35, 36, 37], "repres": [5, 6, 9, 10, 15, 30, 33], "represent": 31, "reproduc": 54, "reproduct": [35, 36, 37], "requir": [4, 6, 38, 39, 50], "rescal": [38, 39], "reshap": [8, 9, 10, 13, 15, 30, 33], "residual_block_cl": 29, "resiz": [0, 30, 45], "resnet1d_8": [0, 29], "resnet1dbas": [0, 29], "resnet50": [25, 28], "resnet50backbon": [0, 25], "resnet_1d": [0, 28], "resnet_block_cl": 29, "resnetblock": [0, 29], "resnetse1d_5": [0, 29], "resnetse1d_8": [0, 29], "resnetseblock": [0, 29], "resolut": [28, 32], "resourc": 52, "respect": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "respons": [4, 5, 6, 50], "restor": 31, "result": [0, 35, 36, 37, 52], "resum": 37, "rethink": [25, 28], "retriev": [4, 6, 9, 10, 11, 12, 13, 14], "return": [2, 3, 17, 18, 31, 33, 38, 39, 40, 42, 43, 50, 51, 52, 53], "return_singl": [4, 5, 6], "rgb": 32, "ronneberg": [28, 32], "row": [8, 13, 30, 33, 50], "run": [0, 22, 23, 24, 27, 29, 35, 36, 37, 52, 53], "run_": [35, 36, 37], "run_count": [35, 36, 37], "run_statu": [0, 35, 36, 37], "runnabl": [35, 36, 37], "rwightman": 31, "same": [4, 5, 6, 9, 10, 15, 28, 32, 35, 36, 37, 38, 39, 50, 53], "sampl": [4, 5, 6, 8, 13, 31, 37, 38, 39, 51, 54], "save": [35, 36, 37], "save_run_statu": [35, 36, 37, 53], "scalabl": 52, "scale": [28, 30, 38, 39, 52], "scale_factor": [30, 45], "schroff": [25, 28], "script": 52, "seamless": 52, "seamlessli": [37, 52], "search": 47, "second": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 50, 51], "seed": [38, 39, 52], "segmant": [5, 6], "segment": [5, 6, 25, 28, 32, 53], "seismic": [52, 53], "select": [8, 13], "self": [8, 13, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 52, 53], "semant": [5, 6, 25, 28], "sensor_read": 50, "separ": 50, "seq_length": 33, "sequenc": [26, 33, 38, 39], "sequenti": [9, 10, 15], "seri": 50, "serial": 52, "serializ": [35, 36, 37], "serv": [9, 10, 15], "set": [35, 36, 37, 52, 53], "setr": [0, 28, 53], "setr_pup": [0, 28, 30, 53], "setup": [0, 40, 53], "sfm": [0, 28], "shape": [5, 6, 8, 9, 10, 13, 15, 22, 23, 24, 26, 27, 29, 31, 39, 53], "shell": 52, "shortcutlay": [0, 27], "should": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 38, 39, 50, 51, 52], "show": 53, "shown": [9, 11, 14], "shuffl": [31, 53], "sign": [38, 39], "similar": 50, "simpl": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 37, 47, 51, 54], "simpledataset": [0, 4, 5, 6, 40], "simplelightningpipelin": [0, 37, 53], "simpler": 52, "simplereconstructionnet": [28, 32], "simplesupervisedmodel": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 54], "singl": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 38, 39, 50], "size": [9, 10, 15, 26, 28, 30, 31, 32, 33, 42, 45, 50, 53], "skip": [28, 32], "slate": 52, "slice": [9, 14], "small": 18, "smooth": [17, 18], "so": [4, 5, 6], "solut": 54, "some": [35, 36, 37, 50, 52], "sourc": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "specif": [50, 52], "specifi": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 37, 38, 39, 51, 52], "springer": [28, 32], "squar": [30, 33], "squeez": [0, 39, 53], "squeezeandexcitation1d": [0, 29], "ssl": 53, "stabil": 18, "stage": [37, 40, 53], "start": [9, 11, 14, 52], "start_tim": 52, "state": [2, 3, 52], "static": [35, 36, 37], "statu": [35, 36, 37, 52], "stem": [30, 33], "step": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 51], "step_nam": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "stide": [9, 10, 15], "storag": [4, 6, 8, 9, 10, 11, 12, 13, 14, 50, 52], "store": [9, 15, 35, 36, 37, 50, 52], "str": [8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 53], "stride": [9, 10, 15, 27], "string": [8, 13], "structur": [4, 6, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 47, 54], "style": 50, "subarrai": [9, 10, 15], "subclass": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 38, 39], "submodul": 0, "subpackag": 0, "suggest": 50, "suitabl": 52, "sum": 52, "sum_of_distances_pipelin": 52, "summari": [5, 6], "sumofdist": 52, "super": [52, 53], "supervis": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 51], "supervised_dataset": [0, 5, 53], "supervisedreconstructiondataset": [0, 5, 6, 53], "support": [9, 10, 15, 52], "synchron": [2, 3], "system": [35, 36, 37], "system_info": [0, 35, 36, 37], "t": [4, 5, 6, 52], "tabular_read": [0, 8, 9], "tabularread": [0, 8, 13], "take": [4, 6, 38, 39], "target": [2, 3, 5, 6, 18, 37, 50, 51], "target_h_s": [39, 53], "target_w_s": [39, 53], "task": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 50, 52, 53], "tensor": [0, 2, 3, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 51], "test": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 54], "test_dataload": [0, 37, 40, 53], "test_dataset": 53, "test_img_read": 53, "test_label_read": 53, "test_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 53], "test_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34], "th": 50, "thei": [35, 36, 37, 38, 39, 50], "them": [8, 9, 10, 13, 15], "thi": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 38, 39, 50, 51, 52], "third": [9, 10, 15, 50], "thoma": [28, 32], "though": [35, 36, 37, 52], "threshold": 30, "through": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 52], "thu": [8, 9, 11, 13, 14], "tiff": [9, 14, 50, 53], "tiff_read": [0, 9, 53], "tiffread": [0, 9, 14, 53], "time": [4, 6, 8, 9, 10, 11, 12, 13, 14, 35, 36, 37, 50, 52], "timm": 31, "to_tensor": [0, 18, 43], "todo": 53, "togeth": [4, 5, 6, 50], "token": 31, "too": [9, 15], "top": 51, "torch": [2, 3, 4, 5, 6, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 43, 45, 50, 53], "torchmetr": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 53], "torchvis": [30, 33], "total": 53, "tpu": 53, "traceabl": [35, 36, 37], "track": [35, 36, 37, 52], "train": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 47, 54], "train_dataload": [0, 37, 40, 53], "train_dataset": 53, "train_img_read": 53, "train_label_read": 53, "train_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 53], "train_path": 53, "trainabl": 53, "trainer": [0, 37, 54], "training_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "transform": [0, 4, 5, 6, 16, 26, 28, 30, 31, 33, 50, 53], "transform_dim": 26, "transformer_activ": 26, "transformer_dim": 26, "transformer_dropout": 26, "transformpipelin": [0, 38, 39], "translat": 33, "transpos": 53, "tree": 31, "troubleshoot": 52, "true": [4, 5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 45, 52, 53], "tupl": [4, 5, 6, 8, 9, 10, 13, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 50, 51, 52, 53], "turn": 50, "tutori": 47, "two": [5, 6, 37, 50, 52], "type": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 50, 53], "typic": [28, 32, 50], "u": [28, 32], "under": 46, "unet": [0, 28], "union": [4, 5, 6, 8, 9, 11, 13, 14], "uniqu": [35, 36, 37, 52], "unit": 54, "unknown": 37, "unless": 50, "unpatchifi": [0, 31], "unsqueez": [0, 39], "unsupervis": [4, 5, 6, 50], "up": [28, 32], "up_scal": [28, 30], "updat": [0, 2, 3, 52], "upon": 52, "upper": [9, 10, 15], "upsampl": [0, 28, 30, 32, 41], "upscal": 32, "url": 50, "us": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 47, 48, 52, 54], "usag": 52, "use_bottleneck": 27, "use_residu": 27, "user": [35, 36, 37, 52], "usual": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39, 50], "util": [0, 4, 5, 6, 9, 15, 16, 35, 36, 37, 50, 52, 53], "val": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 53], "val_dataload": [0, 40, 53], "val_dataset": 53, "val_img_read": 53, "val_label_read": 53, "val_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 53], "valid": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37], "validation_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34], "valu": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 50, 52], "valueerror": [9, 11, 14, 37, 53], "vari": 50, "variabl": [35, 36, 37], "vector": 50, "veri": [21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 51], "versatil": [35, 36, 37, 52], "version": 52, "version_3": 53, "via": [50, 52], "vision": [30, 33], "vision_transform": [30, 33], "visiontransform": 31, "vit": [0, 28, 30], "w": [28, 31, 32, 42, 53], "wa": [9, 10, 15, 28, 32], "wai": 50, "warn": [30, 45], "we": [4, 5, 6, 50, 52, 53], "weight": [28, 30, 33], "when": [4, 5, 6, 9, 10, 15, 35, 36, 37], "where": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 50, 51], "whether": [2, 3, 26, 28, 30, 31], "which": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 35, 36, 37, 39, 50, 51], "while": 50, "whole": 37, "whose": [38, 39], "width": [9, 10, 15, 28, 30, 31, 32, 33, 42], "wise": 50, "wisenet": [0, 28], "word": [4, 6, 38, 39], "work": [35, 36, 37, 52, 54], "workflow": 52, "working_dir": 52, "workspac": [52, 53], "wrapper": [25, 28, 32], "write": 52, "x": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 43, 45, 52, 53], "x1": 32, "x2": 32, "y": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37, 52], "y_hat": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 37], "y_pred": [18, 37], "y_true": [18, 37], "yaml": [35, 36, 37, 52], "you": [48, 52], "your": 52, "zarr": [9, 15], "zarr_read": [0, 9], "zero": [18, 38, 39], "zeropadder2d": [0, 22, 23]}, "titles": ["Programming Reference", "minerva.analysis", "minerva.analysis.metrics", "minerva.analysis.metrics.pixel_accuracy", "minerva.data.datasets.base", "minerva.data.datasets", "minerva.data.datasets.supervised_dataset", "minerva.data", "minerva.data.readers.csv_reader", "minerva.data.readers", "minerva.data.readers.patched_array_reader", "minerva.data.readers.png_reader", "minerva.data.readers.reader", "minerva.data.readers.tabular_reader", "minerva.data.readers.tiff_reader", "minerva.data.readers.zarr_reader", "minerva", "minerva.losses._functional", "minerva.losses.dice", "minerva.losses", "minerva.models", "minerva.models.nets.base", "minerva.models.nets.cnn_ha_etal", "minerva.models.nets.cnn_pf", "minerva.models.nets.deep_conv_lstm", "minerva.models.nets.deeplabv3", "minerva.models.nets.imu_transformer", "minerva.models.nets.inception_time", "minerva.models.nets", "minerva.models.nets.resnet_1d", "minerva.models.nets.setr", "minerva.models.nets.sfm", "minerva.models.nets.unet", "minerva.models.nets.vit", "minerva.models.nets.wisenet", "minerva.pipelines.base", "minerva.pipelines", "minerva.pipelines.lightning_pipeline", "minerva.transforms", "minerva.transforms.transform", "minerva.utils.data", "minerva.utils", "minerva.utils.position_embedding", "minerva.utils.tensor", "minerva.utils.typing", "minerva.utils.upsample", "Contributing", "Welcome to Minerva\u2019s documentation!", "Installation Guide", "minerva", "Datasets, Readers, and Related Data Structures", "Models", "Pipelines", "A Simple Example of training a model using Minerva", "Tutorials"], "titleterms": {"": [47, 53], "1": 52, "2": 52, "3": 52, "4": 52, "5": 52, "6": 52, "A": 53, "The": 51, "_function": 17, "activ": 50, "analysi": [1, 2, 3], "attribut": [15, 18, 31, 35, 37, 44], "base": [4, 21, 35], "class": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 51], "cli": 52, "clonabl": 52, "cnn_ha_et": 22, "cnn_pf": 23, "composit": 52, "con": 50, "config": 53, "content": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 47], "contribut": 46, "csv_reader": 8, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 40, 50, 53], "dataset": [4, 5, 6, 50], "deep_conv_lstm": 24, "deeplabv3": 25, "definit": 50, "dice": 18, "distribut": 52, "document": 47, "environ": 52, "exampl": [4, 5, 6, 9, 10, 15, 50, 53], "function": [17, 18, 30, 31, 37, 40, 42, 43, 45], "gener": 53, "guid": 48, "how": 50, "human": 50, "imag": 50, "implement": 50, "imu_transform": 26, "inception_tim": 27, "indic": 47, "inerti": 50, "instal": 48, "integr": 52, "kei": 50, "lightning_pipelin": 37, "log": 52, "loss": [17, 18, 19], "metric": [2, 3], "minerva": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 49, 53], "model": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 51, 53], "modul": [3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 39, 40, 42, 43, 44, 45, 53], "monitor": 52, "net": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], "note": [9, 15], "our": [50, 53], "packag": [2, 5, 9, 28, 36, 38], "parallel": 52, "paramet": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39], "patched_array_read": 10, "pip": 48, "pipelin": [35, 36, 37, 52, 53], "pixel_accuraci": 3, "png_reader": 11, "position_embed": 42, "pro": 50, "program": 0, "rais": [5, 6, 9, 11, 14, 18, 30, 35, 36, 37], "reader": [8, 9, 10, 11, 12, 13, 14, 15, 50], "recognit": 50, "refer": [0, 25, 28, 32], "relat": 50, "reproduc": 52, "resnet_1d": 29, "return": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37], "sampl": 50, "segment": 50, "sensor": 50, "setr": 30, "sfm": 31, "simpl": 53, "simplesupervisedmodel": 51, "solut": 50, "structur": 50, "submodul": [2, 5, 9, 19, 28, 36, 38, 41], "subpackag": [1, 7, 16, 20], "supervised_dataset": 6, "tabl": 47, "tabular_read": 13, "tensor": 43, "test": 53, "tiff_read": 14, "train": 53, "trainer": 53, "transform": [38, 39], "tutori": 54, "type": 44, "unet": 32, "unit": 50, "upsampl": 45, "us": [50, 53], "util": [40, 41, 42, 43, 44, 45], "vit": 33, "welcom": 47, "wisenet": 34, "work": 50, "zarr_read": 15}}) \ No newline at end of file +Search.setIndex({"alltitles": {"1. Reproducibility": [[51, "1.-Reproducibility"]], "2. Composition": [[51, "2.-Composition"]], "3. Integration with CLI": [[51, "3.-Integration-with-CLI"]], "4. Logging and Monitoring": [[51, "4.-Logging-and-Monitoring"]], "5. Clonability": [[51, "5.-Clonability"]], "6. Parallel and Distributed Environments": [[51, "6.-Parallel-and-Distributed-Environments"]], "A Simple Example of training a model using Minerva": [[52, "A-Simple-Example-of-training-a-model-using-Minerva"]], "Attributes": [[15, "attributes"], [18, "attributes"], [30, "attributes"], [34, "attributes"], [36, "attributes"], [43, "attributes"]], "Classes": [[2, "classes"], [3, "classes"], [4, "classes"], [5, "classes"], [6, "classes"], [8, "classes"], [9, "classes"], [10, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [18, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [33, "classes"], [34, "classes"], [35, "classes"], [36, "classes"], [37, "classes"], [38, "classes"], [39, "classes"], [44, "classes"]], "Contents:": [[46, null]], "Contributing": [[45, "contributing"]], "Datasets, Readers, and Related Data Structures": [[49, "Datasets,-Readers,-and-Related-Data-Structures"]], "Examples": [[4, "examples"], [5, "examples"], [5, "id19"], [6, "examples"], [6, "id19"], [9, "examples"], [9, "id18"], [10, "examples"], [15, "examples"], [15, "id14"]], "Examples of Data Units, Samples, and Datasets": [[49, "Examples-of-Data-Units,-Samples,-and-Datasets"]], "Examples of Dataset Implementations": [[49, "Examples-of-Dataset-Implementations"]], "Functions": [[17, "functions"], [18, "functions"], [29, "functions"], [30, "functions"], [36, "functions"], [39, "functions"], [41, "functions"], [42, "functions"], [44, "functions"]], "General configs": [[52, "General-configs"]], "How a Dataset Class Works": [[49, "How-a-Dataset-Class-Works"]], "Human Activity Recognition using Inertial Sensors Example": [[49, "Human-Activity-Recognition-using-Inertial-Sensors-Example"]], "Image Segmentation Example": [[49, "Image-Segmentation-Example"]], "Indices and tables": [[46, "indices-and-tables"]], "Installation Guide": [[47, "installation-guide"]], "Key Definitions": [[49, "Key-Definitions"]], "Models": [[50, "Models"]], "Module Contents": [[3, "module-contents"], [4, "module-contents"], [6, "module-contents"], [8, "module-contents"], [10, "module-contents"], [11, "module-contents"], [12, "module-contents"], [13, "module-contents"], [14, "module-contents"], [15, "module-contents"], [17, "module-contents"], [18, "module-contents"], [21, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [36, "module-contents"], [38, "module-contents"], [39, "module-contents"], [41, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"]], "Notes": [[9, "notes"], [15, "notes"]], "Our Data Module": [[52, "Our-Data-Module"]], "Our Model": [[52, "Our-Model"]], "Our Pipeline and model\u2019s training": [[52, "Our-Pipeline-and-model's-training"]], "Our Solution: Readers": [[49, "Our-Solution:-Readers"]], "Our Trainer": [[52, "Our-Trainer"]], "Package Contents": [[2, "package-contents"], [5, "package-contents"], [9, "package-contents"], [27, "package-contents"], [35, "package-contents"], [37, "package-contents"]], "Parameters": [[2, "parameters"], [2, "id1"], [3, "parameters"], [3, "id1"], [4, "parameters"], [4, "id17"], [4, "id19"], [5, "parameters"], [5, "id17"], [5, "id28"], [5, "id29"], [6, "parameters"], [6, "id17"], [6, "id28"], [6, "id29"], [6, "id31"], [8, "parameters"], [8, "id1"], [8, "id2"], [9, "parameters"], [9, "id1"], [9, "id3"], [9, "id12"], [9, "id16"], [9, "id17"], [9, "id23"], [9, "id27"], [10, "parameters"], [10, "id9"], [10, "id12"], [10, "id13"], [11, "parameters"], [11, "id1"], [11, "id3"], [12, "parameters"], [13, "parameters"], [13, "id1"], [13, "id3"], [14, "parameters"], [14, "id2"], [15, "parameters"], [15, "id9"], [15, "id12"], [15, "id13"], [18, "parameters"], [21, "parameters"], [21, "id1"], [21, "id2"], [21, "id4"], [21, "id6"], [22, "parameters"], [22, "id1"], [22, "id2"], [22, "id3"], [22, "id5"], [22, "id6"], [22, "id8"], [22, "id10"], [22, "id12"], [23, "parameters"], [23, "id1"], [23, "id2"], [23, "id3"], [23, "id4"], [23, "id6"], [23, "id8"], [23, "id10"], [24, "parameters"], [24, "id1"], [24, "id2"], [24, "id3"], [24, "id5"], [24, "id7"], [25, "parameters"], [25, "id1"], [25, "id2"], [25, "id3"], [25, "id4"], [25, "id6"], [25, "id8"], [25, "id10"], [26, "parameters"], [26, "id1"], [26, "id2"], [26, "id3"], [26, "id5"], [26, "id7"], [26, "id9"], [27, "parameters"], [27, "id1"], [27, "id2"], [27, "id3"], [27, "id5"], [27, "id6"], [27, "id8"], [27, "id10"], [27, "id12"], [27, "id15"], [27, "id16"], [27, "id17"], [28, "parameters"], [28, "id1"], [28, "id2"], [28, "id3"], [28, "id4"], [28, "id5"], [28, "id6"], [28, "id8"], [28, "id10"], [28, "id12"], [29, "parameters"], [29, "id1"], [29, "id2"], [29, "id5"], [29, "id6"], [29, "id7"], [31, "parameters"], [31, "id1"], [31, "id2"], [31, "id4"], [31, "id6"], [31, "id8"], [31, "id9"], [31, "id10"], [32, "parameters"], [33, "parameters"], [33, "id1"], [33, "id2"], [33, "id4"], [33, "id6"], [33, "id8"], [33, "id9"], [34, "parameters"], [34, "id1"], [34, "id2"], [35, "parameters"], [35, "id1"], [35, "id2"], [36, "parameters"], [36, "id1"], [36, "id2"], [36, "id13"], [36, "id14"], [36, "id16"], [36, "id18"], [36, "id19"], [36, "id21"], [36, "id24"], [37, "parameters"], [37, "id1"], [37, "id2"], [37, "id3"], [38, "parameters"], [38, "id1"], [38, "id2"], [38, "id3"], [38, "id4"], [38, "id5"], [38, "id6"]], "Pip Installation": [[47, "pip-installation"]], "Pipelines": [[51, "Pipelines"]], "Programming Reference": [[0, "programming-reference"]], "Pros and Cons": [[49, "Pros-and-Cons"]], "Raises": [[5, "raises"], [6, "raises"], [9, "raises"], [9, "id25"], [11, "raises"], [14, "raises"], [18, "raises"], [29, "raises"], [34, "raises"], [35, "raises"], [36, "raises"], [36, "id23"]], "References": [[24, "references"], [27, "references"], [27, "id14"], [31, "references"]], "Returns": [[4, "returns"], [4, "id18"], [4, "id20"], [4, "id21"], [5, "returns"], [5, "id18"], [5, "id30"], [6, "returns"], [6, "id18"], [6, "id30"], [6, "id32"], [6, "id33"], [8, "returns"], [8, "id3"], [9, "returns"], [9, "id2"], [9, "id13"], [9, "id14"], [9, "id15"], [9, "id24"], [9, "id26"], [9, "id28"], [9, "id29"], [10, "returns"], [10, "id10"], [10, "id11"], [10, "id14"], [10, "id15"], [11, "returns"], [11, "id2"], [11, "id4"], [11, "id5"], [12, "returns"], [12, "id1"], [13, "returns"], [13, "id2"], [13, "id4"], [13, "id5"], [14, "returns"], [14, "id1"], [14, "id3"], [14, "id4"], [15, "returns"], [15, "id10"], [15, "id11"], [21, "returns"], [21, "id3"], [21, "id5"], [21, "id7"], [22, "returns"], [22, "id4"], [22, "id7"], [22, "id9"], [22, "id11"], [22, "id13"], [23, "returns"], [23, "id5"], [23, "id7"], [23, "id9"], [23, "id11"], [24, "returns"], [24, "id4"], [24, "id6"], [24, "id8"], [25, "returns"], [25, "id5"], [25, "id7"], [25, "id9"], [26, "returns"], [26, "id4"], [26, "id6"], [26, "id8"], [26, "id10"], [27, "returns"], [27, "id4"], [27, "id7"], [27, "id9"], [27, "id11"], [27, "id13"], [27, "id18"], [28, "returns"], [28, "id7"], [28, "id9"], [28, "id11"], [28, "id13"], [29, "returns"], [29, "id3"], [31, "returns"], [31, "id3"], [31, "id5"], [31, "id7"], [33, "returns"], [33, "id3"], [33, "id5"], [33, "id7"], [33, "id10"], [34, "returns"], [34, "id3"], [34, "id4"], [34, "id5"], [34, "id6"], [34, "id7"], [34, "id8"], [34, "id9"], [34, "id10"], [34, "id11"], [34, "id12"], [35, "returns"], [35, "id3"], [35, "id4"], [35, "id5"], [35, "id6"], [35, "id7"], [35, "id8"], [35, "id9"], [35, "id10"], [35, "id11"], [35, "id12"], [36, "returns"], [36, "id3"], [36, "id4"], [36, "id5"], [36, "id6"], [36, "id7"], [36, "id8"], [36, "id9"], [36, "id10"], [36, "id11"], [36, "id12"], [36, "id15"], [36, "id17"], [36, "id20"], [36, "id22"], [36, "id25"], [36, "id26"], [36, "id27"]], "Submodules": [[2, "submodules"], [5, "submodules"], [9, "submodules"], [19, "submodules"], [27, "submodules"], [35, "submodules"], [37, "submodules"], [40, "submodules"]], "Subpackages": [[1, "subpackages"], [7, "subpackages"], [16, "subpackages"], [20, "subpackages"]], "Testing": [[52, "Testing"]], "The SimpleSupervisedModel class": [[50, "The-SimpleSupervisedModel-class"]], "Tutorials": [[53, "tutorials"]], "Welcome to Minerva\u2019s documentation!": [[46, "welcome-to-minerva-s-documentation"]], "minerva": [[16, "module-minerva"], [48, "minerva"]], "minerva.analysis": [[1, "module-minerva.analysis"]], "minerva.analysis.metrics": [[2, "module-minerva.analysis.metrics"]], "minerva.analysis.metrics.pixel_accuracy": [[3, "module-minerva.analysis.metrics.pixel_accuracy"]], "minerva.data": [[7, "module-minerva.data"]], "minerva.data.datasets": [[5, "module-minerva.data.datasets"]], "minerva.data.datasets.base": [[4, "module-minerva.data.datasets.base"]], "minerva.data.datasets.supervised_dataset": [[6, "module-minerva.data.datasets.supervised_dataset"]], "minerva.data.readers": [[9, "module-minerva.data.readers"]], "minerva.data.readers.csv_reader": [[8, "module-minerva.data.readers.csv_reader"]], "minerva.data.readers.patched_array_reader": [[10, "module-minerva.data.readers.patched_array_reader"]], "minerva.data.readers.png_reader": [[11, "module-minerva.data.readers.png_reader"]], "minerva.data.readers.reader": [[12, "module-minerva.data.readers.reader"]], "minerva.data.readers.tabular_reader": [[13, "module-minerva.data.readers.tabular_reader"]], "minerva.data.readers.tiff_reader": [[14, "module-minerva.data.readers.tiff_reader"]], "minerva.data.readers.zarr_reader": [[15, "module-minerva.data.readers.zarr_reader"]], "minerva.losses": [[19, "module-minerva.losses"]], "minerva.losses._functional": [[17, "module-minerva.losses._functional"]], "minerva.losses.dice": [[18, "module-minerva.losses.dice"]], "minerva.models": [[20, "module-minerva.models"]], "minerva.models.nets": [[27, "module-minerva.models.nets"]], "minerva.models.nets.base": [[21, "module-minerva.models.nets.base"]], "minerva.models.nets.cnn_ha_etal": [[22, "module-minerva.models.nets.cnn_ha_etal"]], "minerva.models.nets.cnn_pf": [[23, "module-minerva.models.nets.cnn_pf"]], "minerva.models.nets.deeplabv3": [[24, "module-minerva.models.nets.deeplabv3"]], "minerva.models.nets.imu_transformer": [[25, "module-minerva.models.nets.imu_transformer"]], "minerva.models.nets.inception_time": [[26, "module-minerva.models.nets.inception_time"]], "minerva.models.nets.resnet_1d": [[28, "module-minerva.models.nets.resnet_1d"]], "minerva.models.nets.setr": [[29, "module-minerva.models.nets.setr"]], "minerva.models.nets.sfm": [[30, "module-minerva.models.nets.sfm"]], "minerva.models.nets.unet": [[31, "module-minerva.models.nets.unet"]], "minerva.models.nets.vit": [[32, "module-minerva.models.nets.vit"]], "minerva.models.nets.wisenet": [[33, "module-minerva.models.nets.wisenet"]], "minerva.pipelines": [[35, "module-minerva.pipelines"]], "minerva.pipelines.base": [[34, "module-minerva.pipelines.base"]], "minerva.pipelines.lightning_pipeline": [[36, "module-minerva.pipelines.lightning_pipeline"]], "minerva.transforms": [[37, "module-minerva.transforms"]], "minerva.transforms.transform": [[38, "module-minerva.transforms.transform"]], "minerva.utils": [[40, "module-minerva.utils"]], "minerva.utils.data": [[39, "module-minerva.utils.data"]], "minerva.utils.position_embedding": [[41, "module-minerva.utils.position_embedding"]], "minerva.utils.tensor": [[42, "module-minerva.utils.tensor"]], "minerva.utils.typing": [[43, "module-minerva.utils.typing"]], "minerva.utils.upsample": [[44, "module-minerva.utils.upsample"]]}, "docnames": ["api", "autoapi/minerva/analysis/index", "autoapi/minerva/analysis/metrics/index", "autoapi/minerva/analysis/metrics/pixel_accuracy/index", "autoapi/minerva/data/datasets/base/index", "autoapi/minerva/data/datasets/index", "autoapi/minerva/data/datasets/supervised_dataset/index", "autoapi/minerva/data/index", "autoapi/minerva/data/readers/csv_reader/index", "autoapi/minerva/data/readers/index", "autoapi/minerva/data/readers/patched_array_reader/index", "autoapi/minerva/data/readers/png_reader/index", "autoapi/minerva/data/readers/reader/index", "autoapi/minerva/data/readers/tabular_reader/index", "autoapi/minerva/data/readers/tiff_reader/index", "autoapi/minerva/data/readers/zarr_reader/index", "autoapi/minerva/index", "autoapi/minerva/losses/_functional/index", "autoapi/minerva/losses/dice/index", "autoapi/minerva/losses/index", "autoapi/minerva/models/index", "autoapi/minerva/models/nets/base/index", "autoapi/minerva/models/nets/cnn_ha_etal/index", "autoapi/minerva/models/nets/cnn_pf/index", "autoapi/minerva/models/nets/deeplabv3/index", "autoapi/minerva/models/nets/imu_transformer/index", "autoapi/minerva/models/nets/inception_time/index", "autoapi/minerva/models/nets/index", "autoapi/minerva/models/nets/resnet_1d/index", "autoapi/minerva/models/nets/setr/index", "autoapi/minerva/models/nets/sfm/index", "autoapi/minerva/models/nets/unet/index", "autoapi/minerva/models/nets/vit/index", "autoapi/minerva/models/nets/wisenet/index", "autoapi/minerva/pipelines/base/index", "autoapi/minerva/pipelines/index", "autoapi/minerva/pipelines/lightning_pipeline/index", "autoapi/minerva/transforms/index", "autoapi/minerva/transforms/transform/index", "autoapi/minerva/utils/data/index", "autoapi/minerva/utils/index", "autoapi/minerva/utils/position_embedding/index", "autoapi/minerva/utils/tensor/index", "autoapi/minerva/utils/typing/index", "autoapi/minerva/utils/upsample/index", "contributing", "index", "installation", "modules", "notebooks/1.datasets", "notebooks/2.models", "notebooks/3.pipelines", "notebooks/4.minerva_setr_pup_pipeline", "tutorials"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["api.rst", "autoapi/minerva/analysis/index.rst", "autoapi/minerva/analysis/metrics/index.rst", "autoapi/minerva/analysis/metrics/pixel_accuracy/index.rst", "autoapi/minerva/data/datasets/base/index.rst", "autoapi/minerva/data/datasets/index.rst", "autoapi/minerva/data/datasets/supervised_dataset/index.rst", "autoapi/minerva/data/index.rst", "autoapi/minerva/data/readers/csv_reader/index.rst", "autoapi/minerva/data/readers/index.rst", "autoapi/minerva/data/readers/patched_array_reader/index.rst", "autoapi/minerva/data/readers/png_reader/index.rst", "autoapi/minerva/data/readers/reader/index.rst", "autoapi/minerva/data/readers/tabular_reader/index.rst", "autoapi/minerva/data/readers/tiff_reader/index.rst", "autoapi/minerva/data/readers/zarr_reader/index.rst", "autoapi/minerva/index.rst", "autoapi/minerva/losses/_functional/index.rst", "autoapi/minerva/losses/dice/index.rst", "autoapi/minerva/losses/index.rst", "autoapi/minerva/models/index.rst", "autoapi/minerva/models/nets/base/index.rst", "autoapi/minerva/models/nets/cnn_ha_etal/index.rst", "autoapi/minerva/models/nets/cnn_pf/index.rst", "autoapi/minerva/models/nets/deeplabv3/index.rst", "autoapi/minerva/models/nets/imu_transformer/index.rst", "autoapi/minerva/models/nets/inception_time/index.rst", "autoapi/minerva/models/nets/index.rst", "autoapi/minerva/models/nets/resnet_1d/index.rst", "autoapi/minerva/models/nets/setr/index.rst", "autoapi/minerva/models/nets/sfm/index.rst", "autoapi/minerva/models/nets/unet/index.rst", "autoapi/minerva/models/nets/vit/index.rst", "autoapi/minerva/models/nets/wisenet/index.rst", "autoapi/minerva/pipelines/base/index.rst", "autoapi/minerva/pipelines/index.rst", "autoapi/minerva/pipelines/lightning_pipeline/index.rst", "autoapi/minerva/transforms/index.rst", "autoapi/minerva/transforms/transform/index.rst", "autoapi/minerva/utils/data/index.rst", "autoapi/minerva/utils/index.rst", "autoapi/minerva/utils/position_embedding/index.rst", "autoapi/minerva/utils/tensor/index.rst", "autoapi/minerva/utils/typing/index.rst", "autoapi/minerva/utils/upsample/index.rst", "contributing.rst", "index.rst", "installation.rst", "modules.rst", "notebooks/1.datasets.ipynb", "notebooks/2.models.ipynb", "notebooks/3.pipelines.ipynb", "notebooks/4.minerva_setr_pup_pipeline.ipynb", "tutorials.rst"], "indexentries": {"__call__() (minerva.data.datasets.base._transform method)": [[4, "minerva.data.datasets.base._Transform.__call__", false]], "__call__() (minerva.data.datasets.supervised_dataset._transform method)": [[6, "minerva.data.datasets.supervised_dataset._Transform.__call__", false]], "__call__() (minerva.transforms._transform method)": [[37, "minerva.transforms._Transform.__call__", false]], "__call__() (minerva.transforms.flip method)": [[37, "minerva.transforms.Flip.__call__", false]], "__call__() (minerva.transforms.perlinmasker method)": [[37, "minerva.transforms.PerlinMasker.__call__", false]], "__call__() (minerva.transforms.transform._transform method)": [[38, "minerva.transforms.transform._Transform.__call__", false]], "__call__() (minerva.transforms.transform.castto method)": [[38, "minerva.transforms.transform.CastTo.__call__", false]], "__call__() (minerva.transforms.transform.flip method)": [[38, "minerva.transforms.transform.Flip.__call__", false]], "__call__() (minerva.transforms.transform.padding method)": [[38, "minerva.transforms.transform.Padding.__call__", false]], "__call__() (minerva.transforms.transform.perlinmasker method)": [[38, "minerva.transforms.transform.PerlinMasker.__call__", false]], "__call__() (minerva.transforms.transform.squeeze method)": [[38, "minerva.transforms.transform.Squeeze.__call__", false]], "__call__() (minerva.transforms.transform.transformpipeline method)": [[38, "minerva.transforms.transform.TransformPipeline.__call__", false]], "__call__() (minerva.transforms.transform.unsqueeze method)": [[38, "minerva.transforms.transform.Unsqueeze.__call__", false]], "__call__() (minerva.transforms.transformpipeline method)": [[37, "minerva.transforms.TransformPipeline.__call__", false]], "__getitem__() (minerva.data.datasets.base._reader method)": [[4, "minerva.data.datasets.base._Reader.__getitem__", false]], "__getitem__() (minerva.data.datasets.base.simpledataset method)": [[4, "minerva.data.datasets.base.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.simpledataset method)": [[5, "minerva.data.datasets.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset._reader method)": [[6, "minerva.data.datasets.supervised_dataset._Reader.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset.simpledataset method)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervised_dataset.supervisedreconstructiondataset method)": [[6, "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset.__getitem__", false]], "__getitem__() (minerva.data.datasets.supervisedreconstructiondataset method)": [[5, "minerva.data.datasets.SupervisedReconstructionDataset.__getitem__", false]], "__getitem__() (minerva.data.readers._reader method)": [[9, "minerva.data.readers._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.csv_reader.tabularreader method)": [[8, "minerva.data.readers.csv_reader.TabularReader.__getitem__", false]], "__getitem__() (minerva.data.readers.patched_array_reader._reader method)": [[10, "minerva.data.readers.patched_array_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.data.readers.png_reader._reader method)": [[11, "minerva.data.readers.png_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.png_reader.pngreader method)": [[11, "minerva.data.readers.png_reader.PNGReader.__getitem__", false]], "__getitem__() (minerva.data.readers.pngreader method)": [[9, "minerva.data.readers.PNGReader.__getitem__", false]], "__getitem__() (minerva.data.readers.reader._reader method)": [[12, "minerva.data.readers.reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tabular_reader._reader method)": [[13, "minerva.data.readers.tabular_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tabular_reader.tabularreader method)": [[13, "minerva.data.readers.tabular_reader.TabularReader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiff_reader._reader method)": [[14, "minerva.data.readers.tiff_reader._Reader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiff_reader.tiffreader method)": [[14, "minerva.data.readers.tiff_reader.TiffReader.__getitem__", false]], "__getitem__() (minerva.data.readers.tiffreader method)": [[9, "minerva.data.readers.TiffReader.__getitem__", false]], "__getitem__() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader.__getitem__", false]], "__getitem__() (minerva.utils.data.simpledataset method)": [[39, "minerva.utils.data.SimpleDataset.__getitem__", false]], "__len__() (minerva.data.datasets.base._reader method)": [[4, "minerva.data.datasets.base._Reader.__len__", false]], "__len__() (minerva.data.datasets.base.simpledataset method)": [[4, "minerva.data.datasets.base.SimpleDataset.__len__", false]], "__len__() (minerva.data.datasets.simpledataset method)": [[5, "minerva.data.datasets.SimpleDataset.__len__", false]], "__len__() (minerva.data.datasets.supervised_dataset._reader method)": [[6, "minerva.data.datasets.supervised_dataset._Reader.__len__", false]], "__len__() (minerva.data.datasets.supervised_dataset.simpledataset method)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset.__len__", false]], "__len__() (minerva.data.readers._reader method)": [[9, "minerva.data.readers._Reader.__len__", false]], "__len__() (minerva.data.readers.csv_reader.tabularreader method)": [[8, "minerva.data.readers.csv_reader.TabularReader.__len__", false]], "__len__() (minerva.data.readers.patched_array_reader._reader method)": [[10, "minerva.data.readers.patched_array_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader.__len__", false]], "__len__() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader.__len__", false]], "__len__() (minerva.data.readers.png_reader._reader method)": [[11, "minerva.data.readers.png_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.png_reader.pngreader method)": [[11, "minerva.data.readers.png_reader.PNGReader.__len__", false]], "__len__() (minerva.data.readers.pngreader method)": [[9, "minerva.data.readers.PNGReader.__len__", false]], "__len__() (minerva.data.readers.reader._reader method)": [[12, "minerva.data.readers.reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tabular_reader._reader method)": [[13, "minerva.data.readers.tabular_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tabular_reader.tabularreader method)": [[13, "minerva.data.readers.tabular_reader.TabularReader.__len__", false]], "__len__() (minerva.data.readers.tiff_reader._reader method)": [[14, "minerva.data.readers.tiff_reader._Reader.__len__", false]], "__len__() (minerva.data.readers.tiff_reader.tiffreader method)": [[14, "minerva.data.readers.tiff_reader.TiffReader.__len__", false]], "__len__() (minerva.data.readers.tiffreader method)": [[9, "minerva.data.readers.TiffReader.__len__", false]], "__len__() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader.__len__", false]], "__len__() (minerva.utils.data.simpledataset method)": [[39, "minerva.utils.data.SimpleDataset.__len__", false]], "__repr__() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.__repr__", false]], "__repr__() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.__repr__", false]], "__str__() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.__str__", false]], "__str__() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.__str__", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.cnn_pf.cnn_pf_2d method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.imu_transformer.imucnn method)": [[25, "minerva.models.nets.imu_transformer.IMUCNN._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.inception_time.inceptiontime method)": [[26, "minerva.models.nets.inception_time.InceptionTime._calculate_fc_input_features", false]], "_calculate_fc_input_features() (minerva.models.nets.resnet_1d.resnet1dbase method)": [[28, "minerva.models.nets.resnet_1d.ResNet1DBase._calculate_fc_input_features", false]], "_calculate_metrics() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._calculate_metrics", false]], "_compute_metrics() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel._compute_metrics", false]], "_compute_metrics() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel._compute_metrics", false]], "_create_backbone() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._create_backbone", false]], "_create_backbone() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._create_backbone", false]], "_create_backbone() (minerva.models.nets.imu_transformer.imucnn method)": [[25, "minerva.models.nets.imu_transformer.IMUCNN._create_backbone", false]], "_create_backbone() (minerva.models.nets.imu_transformer.imutransformerencoder method)": [[25, "minerva.models.nets.imu_transformer.IMUTransformerEncoder._create_backbone", false]], "_create_fc() (minerva.models.nets.cnn_ha_etal.cnn_haetal_1d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D._create_fc", false]], "_create_fc() (minerva.models.nets.cnn_ha_etal.cnn_haetal_2d method)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D._create_fc", false]], "_create_fc() (minerva.models.nets.cnn_pf.cnn_pf_2d method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D._create_fc", false]], "_create_fc() (minerva.models.nets.imu_transformer.imucnn method)": [[25, "minerva.models.nets.imu_transformer.IMUCNN._create_fc", false]], "_create_fc() (minerva.models.nets.imu_transformer.imutransformerencoder method)": [[25, "minerva.models.nets.imu_transformer.IMUTransformerEncoder._create_fc", false]], "_create_fc() (minerva.models.nets.inception_time.inceptiontime method)": [[26, "minerva.models.nets.inception_time.InceptionTime._create_fc", false]], "_doubleconv (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet._DoubleConv", false]], "_down (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet._Down", false]], "_encoder (class in minerva.models.nets.vit)": [[32, "minerva.models.nets.vit._Encoder", false]], "_evaluate() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._evaluate", false]], "_fit() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._fit", false]], "_generate_data() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule._generate_data", false]], "_get_patches() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader._get_patches", false]], "_get_patches() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader._get_patches", false]], "_get_patches() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader._get_patches", false]], "_imutransformerencoder (class in minerva.models.nets.imu_transformer)": [[25, "minerva.models.nets.imu_transformer._IMUTransformerEncoder", false]], "_inceptiontime (class in minerva.models.nets.inception_time)": [[26, "minerva.models.nets.inception_time._InceptionTime", false]], "_init_weights() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT._init_weights", false]], "_initialize_vars() (minerva.pipelines.base.pipeline method)": [[34, "minerva.pipelines.base.Pipeline._initialize_vars", false]], "_initialize_vars() (minerva.pipelines.lightning_pipeline.pipeline method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline._initialize_vars", false]], "_initialize_vars() (minerva.pipelines.pipeline method)": [[35, "minerva.pipelines.Pipeline._initialize_vars", false]], "_loss_func() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP._loss_func", false]], "_loss_func() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP._loss_func", false]], "_loss_func() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel._loss_func", false]], "_loss_func() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel._loss_func", false]], "_outconv (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet._OutConv", false]], "_pad_data() (minerva.data.readers.patched_array_reader.patchedarrayreader method)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader._pad_data", false]], "_pad_data() (minerva.data.readers.patchedarrayreader method)": [[9, "minerva.data.readers.PatchedArrayReader._pad_data", false]], "_pad_data() (minerva.data.readers.zarr_reader.patchedarrayreader method)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader._pad_data", false]], "_predict() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._predict", false]], "_process_input() (minerva.models.nets.setr._visiontransformerbackbone method)": [[29, "minerva.models.nets.setr._VisionTransformerBackbone._process_input", false]], "_process_input() (minerva.models.nets.vit._visiontransformerbackbone method)": [[32, "minerva.models.nets.vit._VisionTransformerBackbone._process_input", false]], "_reader (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base._Reader", false]], "_reader (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset._Reader", false]], "_reader (class in minerva.data.readers)": [[9, "minerva.data.readers._Reader", false]], "_reader (class in minerva.data.readers.patched_array_reader)": [[10, "minerva.data.readers.patched_array_reader._Reader", false]], "_reader (class in minerva.data.readers.png_reader)": [[11, "minerva.data.readers.png_reader._Reader", false]], "_reader (class in minerva.data.readers.reader)": [[12, "minerva.data.readers.reader._Reader", false]], "_reader (class in minerva.data.readers.tabular_reader)": [[13, "minerva.data.readers.tabular_reader._Reader", false]], "_reader (class in minerva.data.readers.tiff_reader)": [[14, "minerva.data.readers.tiff_reader._Reader", false]], "_resnet1d (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d._ResNet1D", false]], "_run() (minerva.pipelines.base.pipeline method)": [[34, "minerva.pipelines.base.Pipeline._run", false]], "_run() (minerva.pipelines.lightning_pipeline.pipeline method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline._run", false]], "_run() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._run", false]], "_run() (minerva.pipelines.pipeline method)": [[35, "minerva.pipelines.Pipeline._run", false]], "_save_pipeline_info() (minerva.pipelines.base.pipeline method)": [[34, "minerva.pipelines.base.Pipeline._save_pipeline_info", false]], "_save_pipeline_info() (minerva.pipelines.lightning_pipeline.pipeline method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline._save_pipeline_info", false]], "_save_pipeline_info() (minerva.pipelines.pipeline method)": [[35, "minerva.pipelines.Pipeline._save_pipeline_info", false]], "_setr_pup (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr._SetR_PUP", false]], "_setrmlahead (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr._SETRMLAHead", false]], "_setruphead (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr._SETRUPHead", false]], "_single_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP._single_step", false]], "_single_step() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP._single_step", false]], "_single_step() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.wisenet method)": [[27, "minerva.models.nets.WiseNet._single_step", false]], "_single_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel._single_step", false]], "_single_step() (minerva.models.nets.wisenet.wisenet method)": [[33, "minerva.models.nets.wisenet.WiseNet._single_step", false]], "_test() (minerva.pipelines.lightning_pipeline.simplelightningpipeline method)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline._test", false]], "_transform (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base._Transform", false]], "_transform (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset._Transform", false]], "_transform (class in minerva.transforms)": [[37, "minerva.transforms._Transform", false]], "_transform (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform._Transform", false]], "_unet (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet._UNet", false]], "_up (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet._Up", false]], "_visiontransformerbackbone (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr._VisionTransformerBackbone", false]], "_visiontransformerbackbone (class in minerva.models.nets.vit)": [[32, "minerva.models.nets.vit._VisionTransformerBackbone", false]], "_wisenet (class in minerva.models.nets.wisenet)": [[33, "minerva.models.nets.wisenet._WiseNet", false]], "aggregate_loss() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.aggregate_loss", false]], "binary_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.BINARY_MODE", false]], "build_model() (minerva.models.nets.inception_time._inceptiontime method)": [[26, "minerva.models.nets.inception_time._InceptionTime.build_model", false]], "build_model() (minerva.models.nets.inception_time.inceptionmodule method)": [[26, "minerva.models.nets.inception_time.InceptionModule.build_model", false]], "castto (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.CastTo", false]], "clone() (minerva.pipelines.base.pipeline static method)": [[34, "minerva.pipelines.base.Pipeline.clone", false]], "clone() (minerva.pipelines.lightning_pipeline.pipeline static method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.clone", false]], "clone() (minerva.pipelines.pipeline static method)": [[35, "minerva.pipelines.Pipeline.clone", false]], "cnn_haetal_1d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D", false]], "cnn_haetal_2d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D", false]], "cnn_pf_2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_2D", false]], "cnn_pf_backbone (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_Backbone", false]], "cnn_pff_2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.CNN_PFF_2D", false]], "compute() (minerva.analysis.metrics.pixel_accuracy.pixelaccuracy method)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy.compute", false]], "compute() (minerva.analysis.metrics.pixelaccuracy method)": [[2, "minerva.analysis.metrics.PixelAccuracy.compute", false]], "compute_score() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.compute_score", false]], "config (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.config", false]], "config (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.config", false]], "config (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.config", false]], "configure_optimizers() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.configure_optimizers", false]], "configure_optimizers() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.configure_optimizers", false]], "convolutionalblock (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ConvolutionalBlock", false]], "csvreader (class in minerva.data.readers.csv_reader)": [[8, "minerva.data.readers.csv_reader.CSVReader", false]], "data (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.data", false]], "deeplabv3 (class in minerva.models.nets)": [[27, "minerva.models.nets.DeepLabV3", false]], "deeplabv3 (class in minerva.models.nets.deeplabv3)": [[24, "minerva.models.nets.deeplabv3.DeepLabV3", false]], "deeplabv3_head (class in minerva.models.nets.deeplabv3)": [[24, "minerva.models.nets.deeplabv3.DeepLabV3_Head", false]], "dice_score() (in module minerva.losses._functional)": [[17, "minerva.losses._functional.dice_score", false]], "dice_score() (in module minerva.losses.dice)": [[18, "minerva.losses.dice.dice_score", false]], "diceloss (class in minerva.losses.dice)": [[18, "minerva.losses.dice.DiceLoss", false]], "flip (class in minerva.transforms)": [[37, "minerva.transforms.Flip", false]], "flip (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.Flip", false]], "forward() (minerva.losses.dice.diceloss method)": [[18, "minerva.losses.dice.DiceLoss.forward", false]], "forward() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_ha_etal.zeropadder2d method)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D.forward", false]], "forward() (minerva.models.nets.cnn_pf.cnn_pf_backbone method)": [[23, "minerva.models.nets.cnn_pf.CNN_PF_Backbone.forward", false]], "forward() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.cnn_pf.zeropadder2d method)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D.forward", false]], "forward() (minerva.models.nets.deeplabv3.deeplabv3_head method)": [[24, "minerva.models.nets.deeplabv3.DeepLabV3_Head.forward", false]], "forward() (minerva.models.nets.deeplabv3.resnet50backbone method)": [[24, "minerva.models.nets.deeplabv3.Resnet50Backbone.forward", false]], "forward() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.imu_transformer._imutransformerencoder method)": [[25, "minerva.models.nets.imu_transformer._IMUTransformerEncoder.forward", false]], "forward() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.inception_time._inceptiontime method)": [[26, "minerva.models.nets.inception_time._InceptionTime.forward", false]], "forward() (minerva.models.nets.inception_time.inceptionmodule method)": [[26, "minerva.models.nets.inception_time.InceptionModule.forward", false]], "forward() (minerva.models.nets.inception_time.shortcutlayer method)": [[26, "minerva.models.nets.inception_time.ShortcutLayer.forward", false]], "forward() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.resnet_1d._resnet1d method)": [[28, "minerva.models.nets.resnet_1d._ResNet1D.forward", false]], "forward() (minerva.models.nets.resnet_1d.convolutionalblock method)": [[28, "minerva.models.nets.resnet_1d.ConvolutionalBlock.forward", false]], "forward() (minerva.models.nets.resnet_1d.resnetblock method)": [[28, "minerva.models.nets.resnet_1d.ResNetBlock.forward", false]], "forward() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.resnet_1d.squeezeandexcitation1d method)": [[28, "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D.forward", false]], "forward() (minerva.models.nets.setr._setr_pup method)": [[29, "minerva.models.nets.setr._SetR_PUP.forward", false]], "forward() (minerva.models.nets.setr._setrmlahead method)": [[29, "minerva.models.nets.setr._SETRMLAHead.forward", false]], "forward() (minerva.models.nets.setr._setruphead method)": [[29, "minerva.models.nets.setr._SETRUPHead.forward", false]], "forward() (minerva.models.nets.setr._visiontransformerbackbone method)": [[29, "minerva.models.nets.setr._VisionTransformerBackbone.forward", false]], "forward() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.forward", false]], "forward() (minerva.models.nets.setr.upsample method)": [[29, "minerva.models.nets.setr.Upsample.forward", false]], "forward() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.forward", false]], "forward() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward", false]], "forward() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.unet._doubleconv method)": [[31, "minerva.models.nets.unet._DoubleConv.forward", false]], "forward() (minerva.models.nets.unet._down method)": [[31, "minerva.models.nets.unet._Down.forward", false]], "forward() (minerva.models.nets.unet._outconv method)": [[31, "minerva.models.nets.unet._OutConv.forward", false]], "forward() (minerva.models.nets.unet._unet method)": [[31, "minerva.models.nets.unet._UNet.forward", false]], "forward() (minerva.models.nets.unet._up method)": [[31, "minerva.models.nets.unet._Up.forward", false]], "forward() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.forward", false]], "forward() (minerva.models.nets.vit._encoder method)": [[32, "minerva.models.nets.vit._Encoder.forward", false]], "forward() (minerva.models.nets.vit._visiontransformerbackbone method)": [[32, "minerva.models.nets.vit._VisionTransformerBackbone.forward", false]], "forward() (minerva.models.nets.wisenet._wisenet method)": [[33, "minerva.models.nets.wisenet._WiseNet.forward", false]], "forward() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.forward", false]], "forward() (minerva.utils.upsample.upsample method)": [[44, "minerva.utils.upsample.Upsample.forward", false]], "forward_decoder() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_decoder", false]], "forward_encoder() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_encoder", false]], "forward_loss() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.forward_loss", false]], "full_dataset_from_dataloader() (in module minerva.utils.data)": [[39, "minerva.utils.data.full_dataset_from_dataloader", false]], "full_info (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.full_info", false]], "full_info (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.full_info", false]], "full_info (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.full_info", false]], "get_1d_sincos_pos_embed_from_grid() (in module minerva.utils.position_embedding)": [[41, "minerva.utils.position_embedding.get_1d_sincos_pos_embed_from_grid", false]], "get_2d_sincos_pos_embed() (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.get_2d_sincos_pos_embed", false]], "get_2d_sincos_pos_embed() (in module minerva.utils.position_embedding)": [[41, "minerva.utils.position_embedding.get_2d_sincos_pos_embed", false]], "get_2d_sincos_pos_embed_from_grid() (in module minerva.utils.position_embedding)": [[41, "minerva.utils.position_embedding.get_2d_sincos_pos_embed_from_grid", false]], "get_full_data_split() (in module minerva.pipelines.lightning_pipeline)": [[36, "minerva.pipelines.lightning_pipeline.get_full_data_split", false]], "get_full_data_split() (in module minerva.utils.data)": [[39, "minerva.utils.data.get_full_data_split", false]], "get_split_dataloader() (in module minerva.utils.data)": [[39, "minerva.utils.data.get_split_dataloader", false]], "imucnn (class in minerva.models.nets.imu_transformer)": [[25, "minerva.models.nets.imu_transformer.IMUCNN", false]], "imutransformerencoder (class in minerva.models.nets.imu_transformer)": [[25, "minerva.models.nets.imu_transformer.IMUTransformerEncoder", false]], "inceptionmodule (class in minerva.models.nets.inception_time)": [[26, "minerva.models.nets.inception_time.InceptionModule", false]], "inceptiontime (class in minerva.models.nets.inception_time)": [[26, "minerva.models.nets.inception_time.InceptionTime", false]], "initialize_weights() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.initialize_weights", false]], "interpolate_pos_embed() (in module minerva.utils.position_embedding)": [[41, "minerva.utils.position_embedding.interpolate_pos_embed", false]], "log_dir (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.log_dir", false]], "log_dir (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.log_dir", false]], "log_dir (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.log_dir", false]], "mae_vit_base_patch16 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_base_patch16", false]], "mae_vit_base_patch16d4d256 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_base_patch16D4d256", false]], "mae_vit_huge_patch14 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_huge_patch14", false]], "mae_vit_large_patch16 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_large_patch16", false]], "mae_vit_large_patch16d4d256 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_large_patch16D4d256", false]], "mae_vit_small_patch16 (in module minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.mae_vit_small_patch16", false]], "main() (in module minerva.pipelines.lightning_pipeline)": [[36, "minerva.pipelines.lightning_pipeline.main", false]], "maskedautoencodervit (class in minerva.models.nets.sfm)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT", false]], "minerva": [[16, "module-minerva", false]], "minerva.analysis": [[1, "module-minerva.analysis", false]], "minerva.analysis.metrics": [[2, "module-minerva.analysis.metrics", false]], "minerva.analysis.metrics.pixel_accuracy": [[3, "module-minerva.analysis.metrics.pixel_accuracy", false]], "minerva.data": [[7, "module-minerva.data", false]], "minerva.data.datasets": [[5, "module-minerva.data.datasets", false]], "minerva.data.datasets.base": [[4, "module-minerva.data.datasets.base", false]], "minerva.data.datasets.supervised_dataset": [[6, "module-minerva.data.datasets.supervised_dataset", false]], "minerva.data.readers": [[9, "module-minerva.data.readers", false]], "minerva.data.readers.csv_reader": [[8, "module-minerva.data.readers.csv_reader", false]], "minerva.data.readers.patched_array_reader": [[10, "module-minerva.data.readers.patched_array_reader", false]], "minerva.data.readers.png_reader": [[11, "module-minerva.data.readers.png_reader", false]], "minerva.data.readers.reader": [[12, "module-minerva.data.readers.reader", false]], "minerva.data.readers.tabular_reader": [[13, "module-minerva.data.readers.tabular_reader", false]], "minerva.data.readers.tiff_reader": [[14, "module-minerva.data.readers.tiff_reader", false]], "minerva.data.readers.zarr_reader": [[15, "module-minerva.data.readers.zarr_reader", false]], "minerva.losses": [[19, "module-minerva.losses", false]], "minerva.losses._functional": [[17, "module-minerva.losses._functional", false]], "minerva.losses.dice": [[18, "module-minerva.losses.dice", false]], "minerva.models": [[20, "module-minerva.models", false]], "minerva.models.nets": [[27, "module-minerva.models.nets", false]], "minerva.models.nets.base": [[21, "module-minerva.models.nets.base", false]], "minerva.models.nets.cnn_ha_etal": [[22, "module-minerva.models.nets.cnn_ha_etal", false]], "minerva.models.nets.cnn_pf": [[23, "module-minerva.models.nets.cnn_pf", false]], "minerva.models.nets.deeplabv3": [[24, "module-minerva.models.nets.deeplabv3", false]], "minerva.models.nets.imu_transformer": [[25, "module-minerva.models.nets.imu_transformer", false]], "minerva.models.nets.inception_time": [[26, "module-minerva.models.nets.inception_time", false]], "minerva.models.nets.resnet_1d": [[28, "module-minerva.models.nets.resnet_1d", false]], "minerva.models.nets.setr": [[29, "module-minerva.models.nets.setr", false]], "minerva.models.nets.sfm": [[30, "module-minerva.models.nets.sfm", false]], "minerva.models.nets.unet": [[31, "module-minerva.models.nets.unet", false]], "minerva.models.nets.vit": [[32, "module-minerva.models.nets.vit", false]], "minerva.models.nets.wisenet": [[33, "module-minerva.models.nets.wisenet", false]], "minerva.pipelines": [[35, "module-minerva.pipelines", false]], "minerva.pipelines.base": [[34, "module-minerva.pipelines.base", false]], "minerva.pipelines.lightning_pipeline": [[36, "module-minerva.pipelines.lightning_pipeline", false]], "minerva.transforms": [[37, "module-minerva.transforms", false]], "minerva.transforms.transform": [[38, "module-minerva.transforms.transform", false]], "minerva.utils": [[40, "module-minerva.utils", false]], "minerva.utils.data": [[39, "module-minerva.utils.data", false]], "minerva.utils.position_embedding": [[41, "module-minerva.utils.position_embedding", false]], "minerva.utils.tensor": [[42, "module-minerva.utils.tensor", false]], "minerva.utils.typing": [[43, "module-minerva.utils.typing", false]], "minerva.utils.upsample": [[44, "module-minerva.utils.upsample", false]], "model (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.model", false]], "module": [[1, "module-minerva.analysis", false], [2, "module-minerva.analysis.metrics", false], [3, "module-minerva.analysis.metrics.pixel_accuracy", false], [4, "module-minerva.data.datasets.base", false], [5, "module-minerva.data.datasets", false], [6, "module-minerva.data.datasets.supervised_dataset", false], [7, "module-minerva.data", false], [8, "module-minerva.data.readers.csv_reader", false], [9, "module-minerva.data.readers", false], [10, "module-minerva.data.readers.patched_array_reader", false], [11, "module-minerva.data.readers.png_reader", false], [12, "module-minerva.data.readers.reader", false], [13, "module-minerva.data.readers.tabular_reader", false], [14, "module-minerva.data.readers.tiff_reader", false], [15, "module-minerva.data.readers.zarr_reader", false], [16, "module-minerva", false], [17, "module-minerva.losses._functional", false], [18, "module-minerva.losses.dice", false], [19, "module-minerva.losses", false], [20, "module-minerva.models", false], [21, "module-minerva.models.nets.base", false], [22, "module-minerva.models.nets.cnn_ha_etal", false], [23, "module-minerva.models.nets.cnn_pf", false], [24, "module-minerva.models.nets.deeplabv3", false], [25, "module-minerva.models.nets.imu_transformer", false], [26, "module-minerva.models.nets.inception_time", false], [27, "module-minerva.models.nets", false], [28, "module-minerva.models.nets.resnet_1d", false], [29, "module-minerva.models.nets.setr", false], [30, "module-minerva.models.nets.sfm", false], [31, "module-minerva.models.nets.unet", false], [32, "module-minerva.models.nets.vit", false], [33, "module-minerva.models.nets.wisenet", false], [34, "module-minerva.pipelines.base", false], [35, "module-minerva.pipelines", false], [36, "module-minerva.pipelines.lightning_pipeline", false], [37, "module-minerva.transforms", false], [38, "module-minerva.transforms.transform", false], [39, "module-minerva.utils.data", false], [40, "module-minerva.utils", false], [41, "module-minerva.utils.position_embedding", false], [42, "module-minerva.utils.tensor", false], [43, "module-minerva.utils.typing", false], [44, "module-minerva.utils.upsample", false]], "multiclass_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.MULTICLASS_MODE", false]], "multilabel_mode (in module minerva.losses.dice)": [[18, "minerva.losses.dice.MULTILABEL_MODE", false]], "padding (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.Padding", false]], "patchedarrayreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PatchedArrayReader", false]], "patchedarrayreader (class in minerva.data.readers.patched_array_reader)": [[10, "minerva.data.readers.patched_array_reader.PatchedArrayReader", false]], "patchedarrayreader (class in minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PatchedArrayReader", false]], "patchedzarrreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PatchedZarrReader", false]], "patchedzarrreader (class in minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PatchedZarrReader", false]], "patchify() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.patchify", false]], "pathlike (in module minerva.data.readers.zarr_reader)": [[15, "minerva.data.readers.zarr_reader.PathLike", false]], "pathlike (in module minerva.pipelines.base)": [[34, "minerva.pipelines.base.PathLike", false]], "pathlike (in module minerva.pipelines.lightning_pipeline)": [[36, "minerva.pipelines.lightning_pipeline.PathLike", false]], "pathlike (in module minerva.utils.typing)": [[43, "minerva.utils.typing.PathLike", false]], "perlinmasker (class in minerva.transforms)": [[37, "minerva.transforms.PerlinMasker", false]], "perlinmasker (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.PerlinMasker", false]], "pipeline (class in minerva.pipelines)": [[35, "minerva.pipelines.Pipeline", false]], "pipeline (class in minerva.pipelines.base)": [[34, "minerva.pipelines.base.Pipeline", false]], "pipeline (class in minerva.pipelines.lightning_pipeline)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline", false]], "pipeline_id (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.pipeline_id", false]], "pipeline_id (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.pipeline_id", false]], "pipeline_id (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.pipeline_id", false]], "pipeline_info (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.pipeline_info", false]], "pipeline_info (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.pipeline_info", false]], "pipeline_info (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.pipeline_info", false]], "pixelaccuracy (class in minerva.analysis.metrics)": [[2, "minerva.analysis.metrics.PixelAccuracy", false]], "pixelaccuracy (class in minerva.analysis.metrics.pixel_accuracy)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy", false]], "pngreader (class in minerva.data.readers)": [[9, "minerva.data.readers.PNGReader", false]], "pngreader (class in minerva.data.readers.png_reader)": [[11, "minerva.data.readers.png_reader.PNGReader", false]], "predict_dataloader() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule.predict_dataloader", false]], "predict_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.predict_step", false]], "predict_step() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.predict_step", false]], "predict_step() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.wisenet method)": [[27, "minerva.models.nets.WiseNet.predict_step", false]], "predict_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.predict_step", false]], "predict_step() (minerva.models.nets.wisenet.wisenet method)": [[33, "minerva.models.nets.wisenet.WiseNet.predict_step", false]], "random_masking() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.random_masking", false]], "randomdatamodule (class in minerva.utils.data)": [[39, "minerva.utils.data.RandomDataModule", false]], "resize() (in module minerva.models.nets.setr)": [[29, "minerva.models.nets.setr.resize", false]], "resize() (in module minerva.utils.upsample)": [[44, "minerva.utils.upsample.resize", false]], "resnet1d_8 (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNet1D_8", false]], "resnet1dbase (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNet1DBase", false]], "resnet50backbone (class in minerva.models.nets.deeplabv3)": [[24, "minerva.models.nets.deeplabv3.Resnet50Backbone", false]], "resnetblock (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNetBlock", false]], "resnetse1d_5 (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNetSE1D_5", false]], "resnetse1d_8 (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNetSE1D_8", false]], "resnetseblock (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.ResNetSEBlock", false]], "result (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.result", false]], "result (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.result", false]], "result (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.result", false]], "run() (minerva.pipelines.base.pipeline method)": [[34, "minerva.pipelines.base.Pipeline.run", false]], "run() (minerva.pipelines.lightning_pipeline.pipeline method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.run", false]], "run() (minerva.pipelines.pipeline method)": [[35, "minerva.pipelines.Pipeline.run", false]], "run_status (minerva.pipelines.base.pipeline property)": [[34, "minerva.pipelines.base.Pipeline.run_status", false]], "run_status (minerva.pipelines.lightning_pipeline.pipeline property)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.run_status", false]], "run_status (minerva.pipelines.pipeline property)": [[35, "minerva.pipelines.Pipeline.run_status", false]], "setr_pup (class in minerva.models.nets)": [[27, "minerva.models.nets.SETR_PUP", false]], "setr_pup (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr.SETR_PUP", false]], "setup() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule.setup", false]], "shortcutlayer (class in minerva.models.nets.inception_time)": [[26, "minerva.models.nets.inception_time.ShortcutLayer", false]], "simpledataset (class in minerva.data.datasets)": [[5, "minerva.data.datasets.SimpleDataset", false]], "simpledataset (class in minerva.data.datasets.base)": [[4, "minerva.data.datasets.base.SimpleDataset", false]], "simpledataset (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset.SimpleDataset", false]], "simpledataset (class in minerva.utils.data)": [[39, "minerva.utils.data.SimpleDataset", false]], "simplelightningpipeline (class in minerva.pipelines.lightning_pipeline)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline", false]], "simplesupervisedmodel (class in minerva.models.nets)": [[27, "minerva.models.nets.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.base)": [[21, "minerva.models.nets.base.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.deeplabv3)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.imu_transformer)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.inception_time)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel", false]], "simplesupervisedmodel (class in minerva.models.nets.wisenet)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel", false]], "squeeze (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.Squeeze", false]], "squeezeandexcitation1d (class in minerva.models.nets.resnet_1d)": [[28, "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D", false]], "supervisedreconstructiondataset (class in minerva.data.datasets)": [[5, "minerva.data.datasets.SupervisedReconstructionDataset", false]], "supervisedreconstructiondataset (class in minerva.data.datasets.supervised_dataset)": [[6, "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset", false]], "system_info() (minerva.pipelines.base.pipeline method)": [[34, "minerva.pipelines.base.Pipeline.system_info", false]], "system_info() (minerva.pipelines.lightning_pipeline.pipeline method)": [[36, "minerva.pipelines.lightning_pipeline.Pipeline.system_info", false]], "system_info() (minerva.pipelines.pipeline method)": [[35, "minerva.pipelines.Pipeline.system_info", false]], "tabularreader (class in minerva.data.readers.csv_reader)": [[8, "minerva.data.readers.csv_reader.TabularReader", false]], "tabularreader (class in minerva.data.readers.tabular_reader)": [[13, "minerva.data.readers.tabular_reader.TabularReader", false]], "test_dataloader() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule.test_dataloader", false]], "test_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.test_step", false]], "test_step() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.test_step", false]], "test_step() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.test_step", false]], "test_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.test_step", false]], "tiffreader (class in minerva.data.readers)": [[9, "minerva.data.readers.TiffReader", false]], "tiffreader (class in minerva.data.readers.tiff_reader)": [[14, "minerva.data.readers.tiff_reader.TiffReader", false]], "to_tensor() (in module minerva.losses.dice)": [[18, "minerva.losses.dice.to_tensor", false]], "to_tensor() (in module minerva.utils.tensor)": [[42, "minerva.utils.tensor.to_tensor", false]], "train_dataloader() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule.train_dataloader", false]], "trainer (minerva.pipelines.lightning_pipeline.simplelightningpipeline property)": [[36, "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline.trainer", false]], "training_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.training_step", false]], "training_step() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.training_step", false]], "training_step() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.training_step", false]], "training_step() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.training_step", false]], "training_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.training_step", false]], "transformpipeline (class in minerva.transforms)": [[37, "minerva.transforms.TransformPipeline", false]], "transformpipeline (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.TransformPipeline", false]], "unet (class in minerva.models.nets)": [[27, "minerva.models.nets.UNet", false]], "unet (class in minerva.models.nets.unet)": [[31, "minerva.models.nets.unet.UNet", false]], "unpatchify() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.unpatchify", false]], "unsqueeze (class in minerva.transforms.transform)": [[38, "minerva.transforms.transform.Unsqueeze", false]], "update() (minerva.analysis.metrics.pixel_accuracy.pixelaccuracy method)": [[3, "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy.update", false]], "update() (minerva.analysis.metrics.pixelaccuracy method)": [[2, "minerva.analysis.metrics.PixelAccuracy.update", false]], "upsample (class in minerva.models.nets.setr)": [[29, "minerva.models.nets.setr.Upsample", false]], "upsample (class in minerva.utils.upsample)": [[44, "minerva.utils.upsample.Upsample", false]], "val_dataloader() (minerva.utils.data.randomdatamodule method)": [[39, "minerva.utils.data.RandomDataModule.val_dataloader", false]], "validation_step() (minerva.models.nets.base.simplesupervisedmodel method)": [[21, "minerva.models.nets.base.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.cnn_ha_etal.simplesupervisedmodel method)": [[22, "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.cnn_pf.simplesupervisedmodel method)": [[23, "minerva.models.nets.cnn_pf.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.deeplabv3.simplesupervisedmodel method)": [[24, "minerva.models.nets.deeplabv3.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.imu_transformer.simplesupervisedmodel method)": [[25, "minerva.models.nets.imu_transformer.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.inception_time.simplesupervisedmodel method)": [[26, "minerva.models.nets.inception_time.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.resnet_1d.simplesupervisedmodel method)": [[28, "minerva.models.nets.resnet_1d.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.setr.setr_pup method)": [[29, "minerva.models.nets.setr.SETR_PUP.validation_step", false]], "validation_step() (minerva.models.nets.setr_pup method)": [[27, "minerva.models.nets.SETR_PUP.validation_step", false]], "validation_step() (minerva.models.nets.sfm.maskedautoencodervit method)": [[30, "minerva.models.nets.sfm.MaskedAutoencoderViT.validation_step", false]], "validation_step() (minerva.models.nets.simplesupervisedmodel method)": [[27, "minerva.models.nets.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.unet.simplesupervisedmodel method)": [[31, "minerva.models.nets.unet.SimpleSupervisedModel.validation_step", false]], "validation_step() (minerva.models.nets.wisenet.simplesupervisedmodel method)": [[33, "minerva.models.nets.wisenet.SimpleSupervisedModel.validation_step", false]], "wisenet (class in minerva.models.nets)": [[27, "minerva.models.nets.WiseNet", false]], "wisenet (class in minerva.models.nets.wisenet)": [[33, "minerva.models.nets.wisenet.WiseNet", false]], "zeropadder2d (class in minerva.models.nets.cnn_ha_etal)": [[22, "minerva.models.nets.cnn_ha_etal.ZeroPadder2D", false]], "zeropadder2d (class in minerva.models.nets.cnn_pf)": [[23, "minerva.models.nets.cnn_pf.ZeroPadder2D", false]]}, "objects": {"": [[16, 0, 0, "-", "minerva"]], "minerva": [[1, 0, 0, "-", "analysis"], [7, 0, 0, "-", "data"], [19, 0, 0, "-", "losses"], [20, 0, 0, "-", "models"], [35, 0, 0, "-", "pipelines"], [37, 0, 0, "-", "transforms"], [40, 0, 0, "-", "utils"]], "minerva.analysis": [[2, 0, 0, "-", "metrics"]], "minerva.analysis.metrics": [[2, 1, 1, "", "PixelAccuracy"], [3, 0, 0, "-", "pixel_accuracy"]], "minerva.analysis.metrics.PixelAccuracy": [[2, 2, 1, "", "compute"], [2, 2, 1, "", "update"]], "minerva.analysis.metrics.pixel_accuracy": [[3, 1, 1, "", "PixelAccuracy"]], "minerva.analysis.metrics.pixel_accuracy.PixelAccuracy": [[3, 2, 1, "", "compute"], [3, 2, 1, "", "update"]], "minerva.data": [[5, 0, 0, "-", "datasets"], [9, 0, 0, "-", "readers"]], "minerva.data.datasets": [[5, 1, 1, "", "SimpleDataset"], [5, 1, 1, "", "SupervisedReconstructionDataset"], [4, 0, 0, "-", "base"], [6, 0, 0, "-", "supervised_dataset"]], "minerva.data.datasets.SimpleDataset": [[5, 2, 1, "", "__getitem__"], [5, 2, 1, "", "__len__"]], "minerva.data.datasets.SupervisedReconstructionDataset": [[5, 2, 1, "", "__getitem__"]], "minerva.data.datasets.base": [[4, 1, 1, "", "SimpleDataset"], [4, 1, 1, "", "_Reader"], [4, 1, 1, "", "_Transform"]], "minerva.data.datasets.base.SimpleDataset": [[4, 2, 1, "", "__getitem__"], [4, 2, 1, "", "__len__"]], "minerva.data.datasets.base._Reader": [[4, 2, 1, "", "__getitem__"], [4, 2, 1, "", "__len__"]], "minerva.data.datasets.base._Transform": [[4, 2, 1, "", "__call__"]], "minerva.data.datasets.supervised_dataset": [[6, 1, 1, "", "SimpleDataset"], [6, 1, 1, "", "SupervisedReconstructionDataset"], [6, 1, 1, "", "_Reader"], [6, 1, 1, "", "_Transform"]], "minerva.data.datasets.supervised_dataset.SimpleDataset": [[6, 2, 1, "", "__getitem__"], [6, 2, 1, "", "__len__"]], "minerva.data.datasets.supervised_dataset.SupervisedReconstructionDataset": [[6, 2, 1, "", "__getitem__"]], "minerva.data.datasets.supervised_dataset._Reader": [[6, 2, 1, "", "__getitem__"], [6, 2, 1, "", "__len__"]], "minerva.data.datasets.supervised_dataset._Transform": [[6, 2, 1, "", "__call__"]], "minerva.data.readers": [[9, 1, 1, "", "PNGReader"], [9, 1, 1, "", "PatchedArrayReader"], [9, 1, 1, "", "PatchedZarrReader"], [9, 1, 1, "", "TiffReader"], [9, 1, 1, "", "_Reader"], [8, 0, 0, "-", "csv_reader"], [10, 0, 0, "-", "patched_array_reader"], [11, 0, 0, "-", "png_reader"], [12, 0, 0, "-", "reader"], [13, 0, 0, "-", "tabular_reader"], [14, 0, 0, "-", "tiff_reader"], [15, 0, 0, "-", "zarr_reader"]], "minerva.data.readers.PNGReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers.PatchedArrayReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"], [9, 2, 1, "", "_get_patches"], [9, 2, 1, "", "_pad_data"]], "minerva.data.readers.TiffReader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers._Reader": [[9, 2, 1, "", "__getitem__"], [9, 2, 1, "", "__len__"]], "minerva.data.readers.csv_reader": [[8, 1, 1, "", "CSVReader"], [8, 1, 1, "", "TabularReader"]], "minerva.data.readers.csv_reader.TabularReader": [[8, 2, 1, "", "__getitem__"], [8, 2, 1, "", "__len__"]], "minerva.data.readers.patched_array_reader": [[10, 1, 1, "", "PatchedArrayReader"], [10, 1, 1, "", "_Reader"]], "minerva.data.readers.patched_array_reader.PatchedArrayReader": [[10, 2, 1, "", "__getitem__"], [10, 2, 1, "", "__len__"], [10, 2, 1, "", "_get_patches"], [10, 2, 1, "", "_pad_data"]], "minerva.data.readers.patched_array_reader._Reader": [[10, 2, 1, "", "__getitem__"], [10, 2, 1, "", "__len__"]], "minerva.data.readers.png_reader": [[11, 1, 1, "", "PNGReader"], [11, 1, 1, "", "_Reader"]], "minerva.data.readers.png_reader.PNGReader": [[11, 2, 1, "", "__getitem__"], [11, 2, 1, "", "__len__"]], "minerva.data.readers.png_reader._Reader": [[11, 2, 1, "", "__getitem__"], [11, 2, 1, "", "__len__"]], "minerva.data.readers.reader": [[12, 1, 1, "", "_Reader"]], "minerva.data.readers.reader._Reader": [[12, 2, 1, "", "__getitem__"], [12, 2, 1, "", "__len__"]], "minerva.data.readers.tabular_reader": [[13, 1, 1, "", "TabularReader"], [13, 1, 1, "", "_Reader"]], "minerva.data.readers.tabular_reader.TabularReader": [[13, 2, 1, "", "__getitem__"], [13, 2, 1, "", "__len__"]], "minerva.data.readers.tabular_reader._Reader": [[13, 2, 1, "", "__getitem__"], [13, 2, 1, "", "__len__"]], "minerva.data.readers.tiff_reader": [[14, 1, 1, "", "TiffReader"], [14, 1, 1, "", "_Reader"]], "minerva.data.readers.tiff_reader.TiffReader": [[14, 2, 1, "", "__getitem__"], [14, 2, 1, "", "__len__"]], "minerva.data.readers.tiff_reader._Reader": [[14, 2, 1, "", "__getitem__"], [14, 2, 1, "", "__len__"]], "minerva.data.readers.zarr_reader": [[15, 1, 1, "", "PatchedArrayReader"], [15, 1, 1, "", "PatchedZarrReader"], [15, 3, 1, "", "PathLike"]], "minerva.data.readers.zarr_reader.PatchedArrayReader": [[15, 2, 1, "", "__getitem__"], [15, 2, 1, "", "__len__"], [15, 2, 1, "", "_get_patches"], [15, 2, 1, "", "_pad_data"]], "minerva.losses": [[17, 0, 0, "-", "_functional"], [18, 0, 0, "-", "dice"]], "minerva.losses._functional": [[17, 4, 1, "", "dice_score"]], "minerva.losses.dice": [[18, 3, 1, "", "BINARY_MODE"], [18, 1, 1, "", "DiceLoss"], [18, 3, 1, "", "MULTICLASS_MODE"], [18, 3, 1, "", "MULTILABEL_MODE"], [18, 4, 1, "", "dice_score"], [18, 4, 1, "", "to_tensor"]], "minerva.losses.dice.DiceLoss": [[18, 2, 1, "", "aggregate_loss"], [18, 2, 1, "", "compute_score"], [18, 2, 1, "", "forward"]], "minerva.models": [[27, 0, 0, "-", "nets"]], "minerva.models.nets": [[27, 1, 1, "", "DeepLabV3"], [27, 1, 1, "", "SETR_PUP"], [27, 1, 1, "", "SimpleSupervisedModel"], [27, 1, 1, "", "UNet"], [27, 1, 1, "", "WiseNet"], [21, 0, 0, "-", "base"], [22, 0, 0, "-", "cnn_ha_etal"], [23, 0, 0, "-", "cnn_pf"], [24, 0, 0, "-", "deeplabv3"], [25, 0, 0, "-", "imu_transformer"], [26, 0, 0, "-", "inception_time"], [28, 0, 0, "-", "resnet_1d"], [29, 0, 0, "-", "setr"], [30, 0, 0, "-", "sfm"], [31, 0, 0, "-", "unet"], [32, 0, 0, "-", "vit"], [33, 0, 0, "-", "wisenet"]], "minerva.models.nets.SETR_PUP": [[27, 2, 1, "", "_compute_metrics"], [27, 2, 1, "", "_loss_func"], [27, 2, 1, "", "_single_step"], [27, 2, 1, "", "configure_optimizers"], [27, 2, 1, "", "forward"], [27, 2, 1, "", "predict_step"], [27, 2, 1, "", "test_step"], [27, 2, 1, "", "training_step"], [27, 2, 1, "", "validation_step"]], "minerva.models.nets.SimpleSupervisedModel": [[27, 2, 1, "", "_compute_metrics"], [27, 2, 1, "", "_loss_func"], [27, 2, 1, "", "_single_step"], [27, 2, 1, "", "configure_optimizers"], [27, 2, 1, "", "forward"], [27, 2, 1, "", "predict_step"], [27, 2, 1, "", "test_step"], [27, 2, 1, "", "training_step"], [27, 2, 1, "", "validation_step"]], "minerva.models.nets.WiseNet": [[27, 2, 1, "", "_single_step"], [27, 2, 1, "", "predict_step"]], "minerva.models.nets.base": [[21, 1, 1, "", "SimpleSupervisedModel"]], "minerva.models.nets.base.SimpleSupervisedModel": [[21, 2, 1, "", "_compute_metrics"], [21, 2, 1, "", "_loss_func"], [21, 2, 1, "", "_single_step"], [21, 2, 1, "", "configure_optimizers"], [21, 2, 1, "", "forward"], [21, 2, 1, "", "predict_step"], [21, 2, 1, "", "test_step"], [21, 2, 1, "", "training_step"], [21, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_ha_etal": [[22, 1, 1, "", "CNN_HaEtAl_1D"], [22, 1, 1, "", "CNN_HaEtAl_2D"], [22, 1, 1, "", "SimpleSupervisedModel"], [22, 1, 1, "", "ZeroPadder2D"]], "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_1D": [[22, 2, 1, "", "_calculate_fc_input_features"], [22, 2, 1, "", "_create_backbone"], [22, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_ha_etal.CNN_HaEtAl_2D": [[22, 2, 1, "", "_calculate_fc_input_features"], [22, 2, 1, "", "_create_backbone"], [22, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_ha_etal.SimpleSupervisedModel": [[22, 2, 1, "", "_compute_metrics"], [22, 2, 1, "", "_loss_func"], [22, 2, 1, "", "_single_step"], [22, 2, 1, "", "configure_optimizers"], [22, 2, 1, "", "forward"], [22, 2, 1, "", "predict_step"], [22, 2, 1, "", "test_step"], [22, 2, 1, "", "training_step"], [22, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_ha_etal.ZeroPadder2D": [[22, 2, 1, "", "__repr__"], [22, 2, 1, "", "__str__"], [22, 2, 1, "", "forward"]], "minerva.models.nets.cnn_pf": [[23, 1, 1, "", "CNN_PFF_2D"], [23, 1, 1, "", "CNN_PF_2D"], [23, 1, 1, "", "CNN_PF_Backbone"], [23, 1, 1, "", "SimpleSupervisedModel"], [23, 1, 1, "", "ZeroPadder2D"]], "minerva.models.nets.cnn_pf.CNN_PF_2D": [[23, 2, 1, "", "_calculate_fc_input_features"], [23, 2, 1, "", "_create_fc"]], "minerva.models.nets.cnn_pf.CNN_PF_Backbone": [[23, 2, 1, "", "forward"]], "minerva.models.nets.cnn_pf.SimpleSupervisedModel": [[23, 2, 1, "", "_compute_metrics"], [23, 2, 1, "", "_loss_func"], [23, 2, 1, "", "_single_step"], [23, 2, 1, "", "configure_optimizers"], [23, 2, 1, "", "forward"], [23, 2, 1, "", "predict_step"], [23, 2, 1, "", "test_step"], [23, 2, 1, "", "training_step"], [23, 2, 1, "", "validation_step"]], "minerva.models.nets.cnn_pf.ZeroPadder2D": [[23, 2, 1, "", "__repr__"], [23, 2, 1, "", "__str__"], [23, 2, 1, "", "forward"]], "minerva.models.nets.deeplabv3": [[24, 1, 1, "", "DeepLabV3"], [24, 1, 1, "", "DeepLabV3_Head"], [24, 1, 1, "", "Resnet50Backbone"], [24, 1, 1, "", "SimpleSupervisedModel"]], "minerva.models.nets.deeplabv3.DeepLabV3_Head": [[24, 2, 1, "", "forward"]], "minerva.models.nets.deeplabv3.Resnet50Backbone": [[24, 2, 1, "", "forward"]], "minerva.models.nets.deeplabv3.SimpleSupervisedModel": [[24, 2, 1, "", "_compute_metrics"], [24, 2, 1, "", "_loss_func"], [24, 2, 1, "", "_single_step"], [24, 2, 1, "", "configure_optimizers"], [24, 2, 1, "", "forward"], [24, 2, 1, "", "predict_step"], [24, 2, 1, "", "test_step"], [24, 2, 1, "", "training_step"], [24, 2, 1, "", "validation_step"]], "minerva.models.nets.imu_transformer": [[25, 1, 1, "", "IMUCNN"], [25, 1, 1, "", "IMUTransformerEncoder"], [25, 1, 1, "", "SimpleSupervisedModel"], [25, 1, 1, "", "_IMUTransformerEncoder"]], "minerva.models.nets.imu_transformer.IMUCNN": [[25, 2, 1, "", "_calculate_fc_input_features"], [25, 2, 1, "", "_create_backbone"], [25, 2, 1, "", "_create_fc"]], "minerva.models.nets.imu_transformer.IMUTransformerEncoder": [[25, 2, 1, "", "_create_backbone"], [25, 2, 1, "", "_create_fc"]], "minerva.models.nets.imu_transformer.SimpleSupervisedModel": [[25, 2, 1, "", "_compute_metrics"], [25, 2, 1, "", "_loss_func"], [25, 2, 1, "", "_single_step"], [25, 2, 1, "", "configure_optimizers"], [25, 2, 1, "", "forward"], [25, 2, 1, "", "predict_step"], [25, 2, 1, "", "test_step"], [25, 2, 1, "", "training_step"], [25, 2, 1, "", "validation_step"]], "minerva.models.nets.imu_transformer._IMUTransformerEncoder": [[25, 2, 1, "", "forward"]], "minerva.models.nets.inception_time": [[26, 1, 1, "", "InceptionModule"], [26, 1, 1, "", "InceptionTime"], [26, 1, 1, "", "ShortcutLayer"], [26, 1, 1, "", "SimpleSupervisedModel"], [26, 1, 1, "", "_InceptionTime"]], "minerva.models.nets.inception_time.InceptionModule": [[26, 2, 1, "", "build_model"], [26, 2, 1, "", "forward"]], "minerva.models.nets.inception_time.InceptionTime": [[26, 2, 1, "", "_calculate_fc_input_features"], [26, 2, 1, "", "_create_fc"]], "minerva.models.nets.inception_time.ShortcutLayer": [[26, 2, 1, "", "forward"]], "minerva.models.nets.inception_time.SimpleSupervisedModel": [[26, 2, 1, "", "_compute_metrics"], [26, 2, 1, "", "_loss_func"], [26, 2, 1, "", "_single_step"], [26, 2, 1, "", "configure_optimizers"], [26, 2, 1, "", "forward"], [26, 2, 1, "", "predict_step"], [26, 2, 1, "", "test_step"], [26, 2, 1, "", "training_step"], [26, 2, 1, "", "validation_step"]], "minerva.models.nets.inception_time._InceptionTime": [[26, 2, 1, "", "build_model"], [26, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d": [[28, 1, 1, "", "ConvolutionalBlock"], [28, 1, 1, "", "ResNet1DBase"], [28, 1, 1, "", "ResNet1D_8"], [28, 1, 1, "", "ResNetBlock"], [28, 1, 1, "", "ResNetSE1D_5"], [28, 1, 1, "", "ResNetSE1D_8"], [28, 1, 1, "", "ResNetSEBlock"], [28, 1, 1, "", "SimpleSupervisedModel"], [28, 1, 1, "", "SqueezeAndExcitation1D"], [28, 1, 1, "", "_ResNet1D"]], "minerva.models.nets.resnet_1d.ConvolutionalBlock": [[28, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d.ResNet1DBase": [[28, 2, 1, "", "_calculate_fc_input_features"]], "minerva.models.nets.resnet_1d.ResNetBlock": [[28, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d.SimpleSupervisedModel": [[28, 2, 1, "", "_compute_metrics"], [28, 2, 1, "", "_loss_func"], [28, 2, 1, "", "_single_step"], [28, 2, 1, "", "configure_optimizers"], [28, 2, 1, "", "forward"], [28, 2, 1, "", "predict_step"], [28, 2, 1, "", "test_step"], [28, 2, 1, "", "training_step"], [28, 2, 1, "", "validation_step"]], "minerva.models.nets.resnet_1d.SqueezeAndExcitation1D": [[28, 2, 1, "", "forward"]], "minerva.models.nets.resnet_1d._ResNet1D": [[28, 2, 1, "", "forward"]], "minerva.models.nets.setr": [[29, 1, 1, "", "SETR_PUP"], [29, 1, 1, "", "Upsample"], [29, 1, 1, "", "_SETRMLAHead"], [29, 1, 1, "", "_SETRUPHead"], [29, 1, 1, "", "_SetR_PUP"], [29, 1, 1, "", "_VisionTransformerBackbone"], [29, 4, 1, "", "resize"]], "minerva.models.nets.setr.SETR_PUP": [[29, 2, 1, "", "_compute_metrics"], [29, 2, 1, "", "_loss_func"], [29, 2, 1, "", "_single_step"], [29, 2, 1, "", "configure_optimizers"], [29, 2, 1, "", "forward"], [29, 2, 1, "", "predict_step"], [29, 2, 1, "", "test_step"], [29, 2, 1, "", "training_step"], [29, 2, 1, "", "validation_step"]], "minerva.models.nets.setr.Upsample": [[29, 2, 1, "", "forward"]], "minerva.models.nets.setr._SETRMLAHead": [[29, 2, 1, "", "forward"]], "minerva.models.nets.setr._SETRUPHead": [[29, 2, 1, "", "forward"]], "minerva.models.nets.setr._SetR_PUP": [[29, 2, 1, "", "forward"]], "minerva.models.nets.setr._VisionTransformerBackbone": [[29, 2, 1, "", "_process_input"], [29, 2, 1, "", "forward"]], "minerva.models.nets.sfm": [[30, 1, 1, "", "MaskedAutoencoderViT"], [30, 4, 1, "", "get_2d_sincos_pos_embed"], [30, 3, 1, "", "mae_vit_base_patch16"], [30, 3, 1, "", "mae_vit_base_patch16D4d256"], [30, 3, 1, "", "mae_vit_huge_patch14"], [30, 3, 1, "", "mae_vit_large_patch16"], [30, 3, 1, "", "mae_vit_large_patch16D4d256"], [30, 3, 1, "", "mae_vit_small_patch16"]], "minerva.models.nets.sfm.MaskedAutoencoderViT": [[30, 2, 1, "", "_init_weights"], [30, 2, 1, "", "configure_optimizers"], [30, 2, 1, "", "forward"], [30, 2, 1, "", "forward_decoder"], [30, 2, 1, "", "forward_encoder"], [30, 2, 1, "", "forward_loss"], [30, 2, 1, "", "initialize_weights"], [30, 2, 1, "", "patchify"], [30, 2, 1, "", "random_masking"], [30, 2, 1, "", "training_step"], [30, 2, 1, "", "unpatchify"], [30, 2, 1, "", "validation_step"]], "minerva.models.nets.unet": [[31, 1, 1, "", "SimpleSupervisedModel"], [31, 1, 1, "", "UNet"], [31, 1, 1, "", "_DoubleConv"], [31, 1, 1, "", "_Down"], [31, 1, 1, "", "_OutConv"], [31, 1, 1, "", "_UNet"], [31, 1, 1, "", "_Up"]], "minerva.models.nets.unet.SimpleSupervisedModel": [[31, 2, 1, "", "_compute_metrics"], [31, 2, 1, "", "_loss_func"], [31, 2, 1, "", "_single_step"], [31, 2, 1, "", "configure_optimizers"], [31, 2, 1, "", "forward"], [31, 2, 1, "", "predict_step"], [31, 2, 1, "", "test_step"], [31, 2, 1, "", "training_step"], [31, 2, 1, "", "validation_step"]], "minerva.models.nets.unet._DoubleConv": [[31, 2, 1, "", "forward"]], "minerva.models.nets.unet._Down": [[31, 2, 1, "", "forward"]], "minerva.models.nets.unet._OutConv": [[31, 2, 1, "", "forward"]], "minerva.models.nets.unet._UNet": [[31, 2, 1, "", "forward"]], "minerva.models.nets.unet._Up": [[31, 2, 1, "", "forward"]], "minerva.models.nets.vit": [[32, 1, 1, "", "_Encoder"], [32, 1, 1, "", "_VisionTransformerBackbone"]], "minerva.models.nets.vit._Encoder": [[32, 2, 1, "", "forward"]], "minerva.models.nets.vit._VisionTransformerBackbone": [[32, 2, 1, "", "_process_input"], [32, 2, 1, "", "forward"]], "minerva.models.nets.wisenet": [[33, 1, 1, "", "SimpleSupervisedModel"], [33, 1, 1, "", "WiseNet"], [33, 1, 1, "", "_WiseNet"]], "minerva.models.nets.wisenet.SimpleSupervisedModel": [[33, 2, 1, "", "_compute_metrics"], [33, 2, 1, "", "_loss_func"], [33, 2, 1, "", "_single_step"], [33, 2, 1, "", "configure_optimizers"], [33, 2, 1, "", "forward"], [33, 2, 1, "", "predict_step"], [33, 2, 1, "", "test_step"], [33, 2, 1, "", "training_step"], [33, 2, 1, "", "validation_step"]], "minerva.models.nets.wisenet.WiseNet": [[33, 2, 1, "", "_single_step"], [33, 2, 1, "", "predict_step"]], "minerva.models.nets.wisenet._WiseNet": [[33, 2, 1, "", "forward"]], "minerva.pipelines": [[35, 1, 1, "", "Pipeline"], [34, 0, 0, "-", "base"], [36, 0, 0, "-", "lightning_pipeline"]], "minerva.pipelines.Pipeline": [[35, 2, 1, "", "_initialize_vars"], [35, 2, 1, "", "_run"], [35, 2, 1, "", "_save_pipeline_info"], [35, 2, 1, "", "clone"], [35, 5, 1, "", "config"], [35, 5, 1, "", "full_info"], [35, 5, 1, "", "log_dir"], [35, 5, 1, "", "pipeline_id"], [35, 5, 1, "", "pipeline_info"], [35, 5, 1, "", "result"], [35, 2, 1, "", "run"], [35, 5, 1, "", "run_status"], [35, 2, 1, "", "system_info"]], "minerva.pipelines.base": [[34, 3, 1, "", "PathLike"], [34, 1, 1, "", "Pipeline"]], "minerva.pipelines.base.Pipeline": [[34, 2, 1, "", "_initialize_vars"], [34, 2, 1, "", "_run"], [34, 2, 1, "", "_save_pipeline_info"], [34, 2, 1, "", "clone"], [34, 5, 1, "", "config"], [34, 5, 1, "", "full_info"], [34, 5, 1, "", "log_dir"], [34, 5, 1, "", "pipeline_id"], [34, 5, 1, "", "pipeline_info"], [34, 5, 1, "", "result"], [34, 2, 1, "", "run"], [34, 5, 1, "", "run_status"], [34, 2, 1, "", "system_info"]], "minerva.pipelines.lightning_pipeline": [[36, 3, 1, "", "PathLike"], [36, 1, 1, "", "Pipeline"], [36, 1, 1, "", "SimpleLightningPipeline"], [36, 4, 1, "", "get_full_data_split"], [36, 4, 1, "", "main"]], "minerva.pipelines.lightning_pipeline.Pipeline": [[36, 2, 1, "", "_initialize_vars"], [36, 2, 1, "", "_run"], [36, 2, 1, "", "_save_pipeline_info"], [36, 2, 1, "", "clone"], [36, 5, 1, "", "config"], [36, 5, 1, "", "full_info"], [36, 5, 1, "", "log_dir"], [36, 5, 1, "", "pipeline_id"], [36, 5, 1, "", "pipeline_info"], [36, 5, 1, "", "result"], [36, 2, 1, "", "run"], [36, 5, 1, "", "run_status"], [36, 2, 1, "", "system_info"]], "minerva.pipelines.lightning_pipeline.SimpleLightningPipeline": [[36, 2, 1, "", "_calculate_metrics"], [36, 2, 1, "", "_evaluate"], [36, 2, 1, "", "_fit"], [36, 2, 1, "", "_predict"], [36, 2, 1, "", "_run"], [36, 2, 1, "", "_test"], [36, 5, 1, "", "data"], [36, 5, 1, "", "model"], [36, 5, 1, "", "trainer"]], "minerva.transforms": [[37, 1, 1, "", "Flip"], [37, 1, 1, "", "PerlinMasker"], [37, 1, 1, "", "TransformPipeline"], [37, 1, 1, "", "_Transform"], [38, 0, 0, "-", "transform"]], "minerva.transforms.Flip": [[37, 2, 1, "", "__call__"]], "minerva.transforms.PerlinMasker": [[37, 2, 1, "", "__call__"]], "minerva.transforms.TransformPipeline": [[37, 2, 1, "", "__call__"]], "minerva.transforms._Transform": [[37, 2, 1, "", "__call__"]], "minerva.transforms.transform": [[38, 1, 1, "", "CastTo"], [38, 1, 1, "", "Flip"], [38, 1, 1, "", "Padding"], [38, 1, 1, "", "PerlinMasker"], [38, 1, 1, "", "Squeeze"], [38, 1, 1, "", "TransformPipeline"], [38, 1, 1, "", "Unsqueeze"], [38, 1, 1, "", "_Transform"]], "minerva.transforms.transform.CastTo": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.Flip": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.Padding": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.PerlinMasker": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.Squeeze": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.TransformPipeline": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform.Unsqueeze": [[38, 2, 1, "", "__call__"]], "minerva.transforms.transform._Transform": [[38, 2, 1, "", "__call__"]], "minerva.utils": [[39, 0, 0, "-", "data"], [41, 0, 0, "-", "position_embedding"], [42, 0, 0, "-", "tensor"], [43, 0, 0, "-", "typing"], [44, 0, 0, "-", "upsample"]], "minerva.utils.data": [[39, 1, 1, "", "RandomDataModule"], [39, 1, 1, "", "SimpleDataset"], [39, 4, 1, "", "full_dataset_from_dataloader"], [39, 4, 1, "", "get_full_data_split"], [39, 4, 1, "", "get_split_dataloader"]], "minerva.utils.data.RandomDataModule": [[39, 2, 1, "", "_generate_data"], [39, 2, 1, "", "predict_dataloader"], [39, 2, 1, "", "setup"], [39, 2, 1, "", "test_dataloader"], [39, 2, 1, "", "train_dataloader"], [39, 2, 1, "", "val_dataloader"]], "minerva.utils.data.SimpleDataset": [[39, 2, 1, "", "__getitem__"], [39, 2, 1, "", "__len__"]], "minerva.utils.position_embedding": [[41, 4, 1, "", "get_1d_sincos_pos_embed_from_grid"], [41, 4, 1, "", "get_2d_sincos_pos_embed"], [41, 4, 1, "", "get_2d_sincos_pos_embed_from_grid"], [41, 4, 1, "", "interpolate_pos_embed"]], "minerva.utils.tensor": [[42, 4, 1, "", "to_tensor"]], "minerva.utils.typing": [[43, 3, 1, "", "PathLike"]], "minerva.utils.upsample": [[44, 1, 1, "", "Upsample"], [44, 4, 1, "", "resize"]], "minerva.utils.upsample.Upsample": [[44, 2, 1, "", "forward"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "data", "Python data"], "4": ["py", "function", "Python function"], "5": ["py", "property", "Python property"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:data", "4": "py:function", "5": "py:property"}, "terms": {"": [25, 34, 35, 36, 51, 53], "0": [4, 5, 6, 9, 10, 11, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 49, 51, 52], "001": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "046317653406444": 51, "06": [29, 32], "07": [17, 18], "1": [4, 5, 6, 9, 11, 14, 18, 22, 23, 25, 26, 27, 29, 30, 31, 33, 37, 38, 41, 49, 52, 53], "10": [9, 10, 15, 51], "100": [9, 10, 15, 51], "1000": [27, 29, 32], "1024": [27, 29, 30], "108": 52, "10x10": [9, 10, 15], "11929": [29, 32], "128": [25, 29, 39], "14": [27, 29], "1411764705882353": 52, "1568627450980392": 52, "16": [23, 27, 29, 30], "1678915": 51, "1715128966": 51, "18": [27, 31], "18th": [27, 31], "19": [27, 29], "1d": [8, 13], "1e": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33], "2": [4, 5, 6, 9, 10, 11, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 49, 50, 52, 53], "20": [9, 10, 15], "2010": [29, 32], "2015": [27, 31], "2017": [24, 27], "21": [9, 10, 15], "22": [9, 10, 15], "224": 30, "23": [9, 10, 15], "24": [9, 10, 15, 27, 29, 30], "25": 51, "256": [27, 29, 52], "281": 52, "29411764705882354": 52, "3": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 49, 52, 53], "30": [9, 10, 15], "31": [9, 10, 15], "32": [9, 10, 15, 26], "320": 52, "33": [9, 10, 15], "34": [9, 10, 15], "382": 52, "4": [9, 10, 15, 27, 29, 30, 36, 49, 52, 53], "40": [9, 10, 15], "4096": [27, 29], "41": [9, 10, 15, 26], "42": [9, 10, 15], "43": [9, 10, 15], "4392156862745098": 52, "44": [9, 10, 15], "4666666666666667": 52, "47058823529411764": 52, "5": [9, 10, 15, 27, 28, 31, 52, 53], "50": [9, 10, 15], "51": [9, 10, 15], "512": [27, 29, 30], "52": [9, 10, 15], "53": [9, 10, 15], "54": [9, 10, 15], "5882352941176471": 52, "5x5": [9, 10, 15], "6": [9, 10, 15, 22, 23, 25, 26, 28, 29, 32, 52, 53], "60": [9, 10, 15, 22, 23, 25, 26, 28], "61": [9, 10, 15], "62": [9, 10, 15], "63": [9, 10, 15], "64": [9, 10, 15, 25, 28], "7": [18, 52], "704": 52, "7333333333333333": 52, "75": 30, "7607843137254902": 52, "8": [25, 30, 39], "8470588235294118": 52, "8666666666666667": 52, "8745098039215686": 52, "8901960784313725": 52, "9": [27, 29, 31], "91": 51, "9607843137254902": 52, "9647058823529412": 52, "9764705882352941": 52, "9803921568627451": 52, "A": [4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 37, 38, 46, 49, 53], "And": 51, "By": [9, 10, 15, 18, 34, 35, 36, 49], "For": [4, 5, 6, 51], "If": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38], "In": [5, 6, 49, 51], "It": [4, 5, 6, 9, 10, 11, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36], "NOT": 51, "No": [4, 5, 6], "One": [37, 38], "Or": 51, "That": [4, 5, 6], "The": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 49, 51, 53], "These": 51, "To": [47, 49], "__call__": [0, 4, 6, 37, 38, 52], "__getitem__": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 39, 49], "__init__": [34, 35, 36, 51, 52], "__len__": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 39, 49], "__repr__": [0, 22, 23], "__str__": [0, 22, 23], "_calculate_fc_input_featur": [0, 22, 23, 25, 26, 28], "_calculate_metr": [0, 36], "_compute_metr": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "_create_backbon": [0, 22, 25], "_create_fc": [0, 22, 23, 25, 26], "_doubleconv": [0, 31], "_down": [0, 31], "_encod": [0, 32], "_end": 51, "_evalu": [0, 36], "_fit": [0, 36], "_function": [0, 19], "_generate_data": [0, 39], "_get_patch": [0, 9, 10, 15], "_imutransformerencod": [0, 25], "_inceptiontim": [0, 26], "_init_weight": [0, 30], "_initialize_var": [0, 34, 35, 36], "_loss": [18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "_loss_func": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "_outconv": [0, 31], "_pad_data": [0, 9, 10, 15], "_predict": [0, 36], "_process_input": [0, 29, 32], "_reader": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15], "_resnet1d": [0, 28], "_result": 51, "_run": [0, 34, 35, 36, 51], "_save_pipeline_info": [0, 34, 35, 36], "_seed": 51, "_setr_pup": [0, 29, 52], "_setrmlahead": [0, 29], "_setruphead": [0, 29], "_single_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "_start": 51, "_test": [0, 36], "_transform": [0, 4, 5, 6, 37, 38, 52], "_type_": 25, "_unet": [0, 27, 31], "_up": [0, 31], "_visiontransformerbackbon": [0, 29, 32], "_wisenet": [0, 33], "ab": [29, 32], "abl": 36, "about": [34, 35, 36], "abstract": [4, 6, 9, 10, 11, 12, 13, 14, 24, 34, 35, 36, 37, 38, 49], "acceler": 52, "access": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 34, 35, 36, 49, 51], "accord": [37, 38], "accuraci": [2, 3], "achiev": 49, "across": [2, 3], "activ": [25, 27, 29, 51], "activation_cl": 28, "actual": [27, 31], "ad": [38, 49], "adam": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "adapt": 49, "add": [38, 51], "addit": [4, 6, 9, 10, 15, 24, 27, 31, 37, 38], "addition": 51, "ae87a62731c04604bb35c0b9d4626982": 51, "after": [22, 23, 26, 28, 34, 35, 36, 51], "aggregate_loss": [0, 18], "aggret": 29, "aid": 51, "algorithm": 49, "align": [27, 29], "align_corn": [27, 29, 44], "all": [4, 5, 6, 9, 15, 18, 34, 35, 36, 37, 38, 51], "allow": [27, 31, 34, 35, 36, 51], "along": [37, 38], "also": [27, 31, 49, 51], "alter": 51, "alwai": [18, 49], "an": [4, 6, 8, 9, 10, 11, 12, 13, 14, 27, 29, 31, 32, 36, 37, 38, 49, 51], "analysi": [0, 16], "ani": [4, 5, 6, 9, 10, 11, 12, 13, 14, 34, 35, 36, 37, 38], "annot": 52, "annotation_path": 52, "annotations_path": 52, "anyth": [4, 6, 37, 38], "api": [17, 34, 35, 36, 51], "append": [4, 5, 6], "appli": [4, 5, 6, 9, 10, 15, 29, 32, 36, 37, 38, 49], "applic": [27, 31], "apply_metrics_per_sampl": 36, "applyi": [4, 6, 37, 38], "approach": 49, "ar": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 49, 51], "arang": [9, 10, 15], "arbitrari": [27, 31], "architectur": [27, 31], "arg": [4, 6, 9, 15, 23, 28, 29, 30, 32, 34, 35, 36, 37, 38, 51], "argmax": [36, 52], "argument": [9, 10, 15, 24, 27, 31, 36, 51], "arrai": [5, 6, 8, 9, 10, 11, 13, 14, 15, 38, 49], "arraylik": [9, 10, 15], "arxiv": [29, 32], "as_posit": 51, "assembli": 31, "assertionerror": [5, 6, 18, 29], "assign": 51, "assist": [27, 31], "assum": [9, 11, 14, 18, 29, 32], "assumpt": [9, 10, 15], "atrou": [24, 27], "attent": [25, 27, 29, 30, 32], "attention_dropout": [29, 32], "attibut": [34, 35, 36], "attribut": [0, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 35, 51], "autoencod": [21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 50], "autom": [34, 35, 36, 51], "aux_output": [27, 29, 32], "aux_output_lay": [27, 29, 32], "aux_weight": [27, 29], "auxiliari": [27, 29], "avail": [34, 35, 36, 52], "avoid": [18, 34, 35, 36, 51], "axi": [37, 38, 52], "b": 25, "backbon": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50], "base": [0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 44, 50, 51], "basic": [34, 35, 36], "batch": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "batch_idx": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "batch_siz": [39, 52], "befor": [9, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 51], "being": [18, 29, 32, 34, 35, 36], "below": [9, 11, 14, 51], "besid": 51, "best": 51, "between": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 49, 50, 51], "bilinear": [27, 29, 31], "binari": [18, 30, 49], "binary_mod": [0, 18], "biomed": [27, 31], "block": 30, "bn": 31, "bool": [2, 3, 4, 5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36], "both": [5, 6], "bottleneck_s": 26, "brox": [27, 31], "build": 52, "build_model": [0, 26], "c": [25, 27, 30, 31, 49], "cach": [34, 35, 36, 51], "cache_result": [34, 35, 36, 51], "calcul": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 51], "call": [34, 35, 36, 49, 51], "callabl": [29, 32], "can": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 34, 35, 36, 37, 38, 47, 49, 51], "case": [4, 5, 6, 49], "cast": [8, 13, 38], "cast_to": [8, 13], "castto": [0, 38], "chang": [8, 13, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50], "channel": [18, 25, 27, 29, 30, 31], "check": [9, 10, 15], "checkpoint": 36, "checkpoint_model": 41, "chen": [24, 27], "chieh": [24, 27], "ckpt_path": 36, "clariti": 49, "class": [0, 51, 52, 53], "class_path": 51, "classif": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 49], "classification_metr": 36, "clean": 51, "cli": [36, 53], "clonabl": 53, "clonal": [34, 35, 36], "clone": [0, 34, 35, 36, 51], "cloneabl": 51, "cloned_pipelin": 51, "cls_token": [30, 41], "cluster": 51, "cmap": 52, "cnn_ha_et": [0, 27], "cnn_haetal_1d": [0, 22], "cnn_haetal_2d": [0, 22], "cnn_pf": [0, 27], "cnn_pf_2d": [0, 23], "cnn_pf_backbon": [0, 23], "cnn_pff_2d": [0, 23], "code": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50, 51], "coeffici": 18, "collect": [4, 6, 8, 9, 10, 11, 12, 13, 14, 49], "color": 52, "column": [8, 13, 29, 32, 49], "columns_to_select": [8, 13], "com": 30, "combin": 51, "command": 51, "common": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50, 51], "complet": [31, 51], "complex": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50, 51], "compon": 51, "compos": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50, 51], "composit": 53, "comprehens": 51, "comput": [0, 2, 3, 9, 10, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 50, 51], "compute_scor": [0, 18], "concaten": [27, 31], "confer": [27, 31], "config": [0, 34, 35, 36, 51, 53], "configur": [29, 30, 32, 34, 35, 36, 51], "configure_optim": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "connect": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "consecut": [9, 10, 15], "consid": [8, 13, 49, 50, 51], "consist": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 51], "constant": [9, 10, 15, 18, 51], "construct": 45, "constructor": 51, "contain": [5, 6, 9, 11, 30, 36], "content": 0, "contract": [27, 31], "contribut": 18, "conv": 31, "conv_act": [27, 29], "conv_norm": [27, 29], "conv_stem_config": [29, 32], "convert": 49, "convolut": [22, 23, 24, 26, 27, 28, 29, 31, 32], "convolutionalblock": [0, 28], "convstemconfig": [29, 32], "coordin": [9, 10, 15], "copi": 51, "copyi": [34, 35, 36], "core": [34, 35, 36, 52], "corner": [9, 10, 15, 27, 29], "correspond": [4, 5, 6, 30, 49], "count": [34, 35, 36, 51], "cpu_count": 52, "creat": [4, 5, 6, 9, 10, 15, 34, 35, 36, 51], "creation": [34, 35, 36, 51], "crossentropyloss": 52, "csv": 49, "csv_reader": [0, 9], "csvreader": [0, 8], "cuda": 52, "cuda_visible_devic": 52, "current": [30, 34, 35, 36], "cxhxw": 49, "d": [30, 41, 49], "data": [0, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 37, 38, 40, 46, 50, 53], "data_modul": [36, 39, 52], "data_path": [9, 15], "data_shap": [8, 9, 10, 13, 15, 39], "datafram": [8, 13], "dataload": [39, 52], "dataloader_idx": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "dataset": [0, 7, 36, 46, 52, 53], "decod": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "decoder_channel": [27, 29], "decoder_depth": 30, "decoder_dropout": [27, 29], "decoder_embed_dim": 30, "decoder_num_head": 30, "deep": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 50, 51], "deeplabv3": [0, 27], "deeplabv3_head": [0, 24], "def": [51, 52], "default": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38], "defin": [4, 6, 8, 9, 10, 11, 12, 13, 14, 37, 38, 49], "definit": [4, 6, 8, 9, 10, 11, 12, 13, 14, 53], "deit": 30, "demonstr": 51, "denomin": 18, "depend": 49, "deploy": 51, "depth": [26, 30], "deriv": [34, 35, 36], "design": [9, 10, 15, 49, 51], "desir": [34, 35, 36], "detail": [37, 38], "detect": [5, 6], "devic": [49, 52], "df": [8, 13], "dice": [0, 19], "dice_coeff": 18, "dice_scor": [0, 17, 18], "diceloss": [0, 18], "dict": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36], "dictionari": [21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 49, 51], "differ": [4, 5, 6, 36, 49], "dim": [17, 18, 52], "dim_feedforward": 25, "dimens": [9, 10, 15, 25, 27, 29, 30, 32, 37, 38, 41], "dimension": [29, 32, 38, 49], "directli": [34, 35, 36, 51], "directori": [9, 11, 14, 34, 35, 36, 49, 51, 52], "disk": [9, 15], "dist_sync_on_step": [2, 3], "distanc": 51, "distance_pipelin": 51, "distribut": 53, "divis": 18, "do": [34, 35, 36], "doc": 52, "document": [9, 10, 15], "doe": [4, 6, 9, 11, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 37, 38, 50], "doesn": 51, "domain": 49, "doubl": 31, "downscal": 31, "dropout": [25, 27, 29, 32], "dropout_factor": 25, "dtype": [18, 38, 42], "duplic": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "dure": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 51], "e": [27, 31, 49, 50], "each": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 41, 49, 51], "easi": 51, "easier": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "effect": 51, "effici": [34, 35, 36, 51], "either": [27, 29], "element": [5, 6, 9, 11, 14, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 49, 50, 51, 52], "elif": 52, "ellipsi": [4, 5, 6, 8, 9, 10, 13, 15, 29, 32, 39], "els": 52, "embed": 30, "embed_dim": [30, 41], "enabl": 51, "encapsul": 51, "encod": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 41], "encode_posit": 25, "encoder_dropout": [27, 29], "end": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 51], "end_tim": 51, "enhanc": 51, "ensur": [49, 51], "entir": [9, 15], "entri": [34, 35, 36, 37, 38], "environ": [34, 35, 36, 53], "ep": [17, 18, 29, 32], "epoch": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "epsilon": [18, 29, 32], "equal": [8, 13, 18], "error": 18, "essenti": 51, "estim": 52, "etc": [4, 6, 8, 9, 10, 11, 12, 13, 14, 49], "evalu": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36], "even": 49, "everi": 49, "everyth": [34, 35, 36], "exactli": [5, 6], "exampl": [46, 51, 53], "except": [34, 35, 36], "exception_info": 51, "exclus": 51, "execut": [34, 35, 36, 51], "exist": [9, 11, 14, 51], "expand_dim": 52, "expans": [27, 31], "expect": [9, 10, 15, 27, 31], "experi": [34, 35, 36], "expos": [34, 35, 36], "express": [8, 13], "extract": [9, 10, 15, 30, 49], "f": [51, 52], "f3": 52, "f3_segment": 52, "f3datamodul": 52, "facebookresearch": 30, "facilit": 51, "factor": [27, 29], "fals": [2, 3, 4, 5, 6, 18, 23, 27, 29, 30, 31, 32, 34, 35, 36, 41, 51, 52], "fanci": [4, 6, 37, 38], "faster": 51, "fc": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "featur": [22, 23, 26, 27, 28, 29, 31, 51], "feed": [29, 32], "feedforward": 25, "fetch": [9, 10, 15, 49], "file": [9, 11, 14, 34, 35, 36, 49, 51, 52], "filenam": [9, 11, 14], "first": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50], "fischer": [27, 31], "fit": [9, 15, 36, 52], "fix": [9, 10, 15], "flatten": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "flexibl": [49, 51], "flip": [0, 37, 38], "float": [2, 3, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 51, 52], "florian": [24, 27], "follow": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50, 51], "form": 31, "format": [49, 50], "forward": [0, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 50], "forward_decod": [0, 30], "forward_encod": [0, 30], "forward_loss": [0, 30], "framework": 52, "from": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 49, 50, 51, 52], "from_logit": 18, "from_numpi": 52, "full": 31, "full_dataset_from_dataload": [0, 39], "full_info": [0, 34, 35, 36], "fulli": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "function": [0, 4, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 37, 38], "g": [27, 31, 49, 50], "gelu": 25, "gener": [4, 5, 6, 9, 10, 15, 34, 35, 36, 37, 38, 49, 51, 53], "georg": [24, 27], "germani": [27, 31], "get": [4, 6, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36], "get_1d_sincos_pos_embed_from_grid": [0, 41], "get_2d_sincos_pos_emb": [0, 30, 41], "get_2d_sincos_pos_embed_from_grid": [0, 41], "get_full_data_split": [0, 36, 39], "get_split_dataload": [0, 39], "git": [34, 35, 36], "github": 30, "given": [9, 11, 14, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 37, 38], "gpu": 52, "grayscal": 31, "greater": 18, "grid": [30, 41], "grid_siz": [30, 41], "guid": 46, "h": [27, 30, 31, 52], "ha": [27, 31], "handl": [4, 6, 8, 9, 10, 11, 12, 13, 14, 27, 31, 34, 35, 36, 49], "har": 49, "hartwig": [24, 27], "have": [4, 5, 6, 8, 9, 10, 13, 15, 34, 35, 36, 37, 38, 49, 51], "head": [25, 27, 29, 30, 32], "height": [27, 29, 30, 31, 32, 41], "henc": [34, 35, 36], "here": [0, 51], "hidden": [27, 29, 30, 32], "hidden_dim": [25, 27, 29, 32], "host": [34, 35, 36], "how": 53, "howev": [4, 6, 37, 38, 49], "hparam": 51, "hpu": 52, "http": [29, 30, 32], "hyperparametersmixin": [34, 35, 36], "i": [0, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 49, 50, 51, 52], "id": [34, 35, 36, 51], "ident": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "identif": 51, "identifi": 51, "ids_restor": 30, "idx": [4, 5, 6, 9, 10, 15, 39], "ignor": [18, 34, 35, 36, 51], "ignore_index": 18, "iii": [27, 31], "imag": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 24, 27, 29, 30, 31, 32, 52], "image_": 49, "image_1": 49, "image_i": 49, "image_read": [4, 5, 6], "image_s": [27, 29, 32, 52], "image_transform": [4, 5, 6], "imageread": [4, 5, 6], "imagetransform": [4, 5, 6], "img": 30, "img_siz": 30, "implement": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 50, 51], "import": [4, 5, 6, 9, 10, 15, 52], "imshow": 52, "imu_transform": [0, 27], "imucnn": [0, 25], "imutransformerencod": [0, 25], "in_chan": 30, "in_channel": [27, 28, 29, 31, 33], "inception_tim": [0, 27], "inceptionmodul": [0, 26], "inceptiontim": [0, 26], "includ": [18, 27, 29, 34, 35, 36], "include_middl": 23, "independ": 51, "index": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 46, 49], "indic": [9, 10, 15, 18, 27, 29, 30, 49], "infer": 36, "inform": [4, 6, 9, 10, 15, 27, 31, 34, 35, 36, 37, 38], "inherit": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 50], "init_arg": 51, "initi": [2, 3, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 51], "initialize_weight": [0, 30], "input": [4, 5, 6, 9, 10, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 44, 50, 52], "input_featur": [22, 23, 25, 26], "input_shap": [22, 23, 25, 26, 28], "input_tensor": [26, 28], "input_tensor_shap": 26, "insid": [34, 35, 36], "insight": 51, "instal": 46, "instanc": 51, "instead": [9, 15], "int": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 39, 41, 51, 52], "integ": [9, 10, 15, 37, 38, 49], "integr": [36, 53], "intend": 36, "interfac": [0, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 51], "intern": [27, 31, 34, 35, 36], "interpol": [27, 29, 31], "interpolate_mod": [27, 29], "interpolate_pos_emb": [0, 41], "intervent": [27, 31], "invalid": 52, "ipu": 52, "item": [4, 6, 8, 9, 10, 11, 12, 13, 14, 51], "its": [9, 10, 15], "jaccardindex": 52, "jpg": 49, "jsonargpars": [36, 51], "just": [4, 6, 37, 38], "keep": [34, 35, 36], "kei": [36, 51, 53], "kernel": [27, 29], "kernel_s": [26, 27, 29], "keyword": [9, 10, 15], "kwarg": [4, 6, 9, 10, 15, 23, 24, 27, 28, 31, 33, 34, 35, 36, 37, 38], "l": [30, 36, 52], "label": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 39, 49, 50], "label_cmap": 52, "label_read": [4, 5, 6], "label_shap": 39, "label_transform": [4, 5, 6], "labelread": [4, 5, 6], "labeltransform": [4, 5, 6], "larg": [9, 15, 34, 35, 36, 51], "large_param": 51, "last": [34, 35, 36], "layer": [22, 23, 25, 26, 27, 28, 29, 30, 31, 32], "layernorm": [29, 30, 32], "learn": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50], "learning_r": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "left": [9, 10, 15], "len": [9, 10, 15, 52], "length": [4, 5, 6, 9, 10, 11, 12, 13, 14, 25, 37, 38, 49], "less": [37, 38], "level": [29, 37, 38, 50], "leverag": 51, "liang": [24, 27], "lightn": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 39, 50, 52], "lightning_log": 52, "lightning_pipelin": [0, 35, 52], "lightningdatamodul": [36, 39, 52], "lightningmodul": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36], "like": [9, 10, 15, 36], "line": 51, "list": [4, 5, 6, 8, 9, 10, 13, 15, 18, 22, 23, 27, 29, 32, 34, 35, 36, 37, 38, 41, 49, 51], "listedcolormap": 52, "liter": 36, "load": [4, 5, 6, 9, 11, 14, 15, 49], "local_rank": 52, "log": [18, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 52, 53], "log_dir": [0, 34, 35, 36], "log_loss": 18, "logger": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "logic": [4, 6, 34, 35, 36, 37, 38, 51], "logit": 18, "loop": [27, 29], "loss": [0, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 50], "loss_fn": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 52], "m": [30, 41, 52], "mae_vit_base_patch16": [0, 30], "mae_vit_base_patch16d4d256": [0, 30], "mae_vit_huge_patch14": [0, 30], "mae_vit_large_patch16": [0, 30], "mae_vit_large_patch16d4d256": [0, 30], "mae_vit_small_patch16": [0, 30], "mai": [34, 35, 36], "main": [0, 36], "mainli": 49, "maintain": 51, "make": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50, 52], "mani": 49, "manner": 51, "map": [5, 6, 27, 31, 49], "mask": [5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 49, 50, 52], "mask_": 49, "mask_1": 49, "mask_i": 49, "mask_ratio": 30, "mask_read": [5, 6], "maskedautoencodervit": [0, 30], "master": 30, "match": [8, 13], "matplotlib": 52, "max": [27, 31, 52], "max_epoch": 52, "maxpool": 31, "mb": 52, "mean": [34, 35, 36], "medic": [27, 31], "memori": [9, 15], "method": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 34, 35, 36, 37, 38, 49, 51], "metric": [0, 1, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36], "miccai": [27, 31], "mid_channel": 31, "middl": 31, "minerva": [0, 47, 50, 53], "minim": 51, "miou": 52, "mixin": [34, 35, 36], "mla": 29, "mla_channel": 29, "mlp": [27, 29, 30, 32], "mlp_dim": [27, 29, 32], "mlp_ratio": 30, "mode": [9, 10, 15, 18, 27, 29, 44, 52], "model": [0, 16, 36, 41, 46, 49, 53], "modifi": [34, 35, 36, 49], "modul": [0, 27, 46, 49, 50, 53], "modular": 51, "monitor": 53, "more": [9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 37, 38, 49, 50], "mseloss": [24, 27, 31], "multi": 29, "multiclass": [18, 52], "multiclass_mod": [0, 18], "multilabel": 18, "multilabel_mod": [0, 18], "multipl": [4, 5, 6, 27, 31, 34, 35, 36, 51], "munich": [27, 31], "must": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 37, 38, 49, 50], "n": [27, 30, 31, 49], "n_channel": [27, 31], "naiv": 29, "name": [8, 9, 11, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 52], "nb_filter": 26, "ndarrai": [5, 6, 8, 9, 10, 11, 13, 14, 15, 37, 38, 52], "nearest": [29, 44], "need": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "net": [0, 20, 50, 52], "network": [22, 23, 25, 26, 27, 28, 29, 31], "neural": [27, 31], "new": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 38, 49, 50], "newsize1": 41, "newsize2": 41, "nhead": 25, "nn": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44], "nois": [37, 38], "non": [51, 52], "none": [4, 5, 6, 8, 9, 10, 13, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 39, 41, 42, 44, 51, 52], "norm": 51, "norm_lay": [27, 29, 30, 32], "norm_pix_loss": 30, "normal": [27, 29, 30, 32, 49], "note": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50, 51], "notebook": 52, "np": [5, 6, 8, 9, 10, 11, 13, 14, 15, 37, 38, 51, 52], "npy": 49, "num_class": [22, 23, 25, 26, 27, 28, 29, 32, 39, 52], "num_conv": [27, 29], "num_encoder_lay": 25, "num_head": [27, 29, 30, 32], "num_lay": [27, 29, 32], "num_patch": 30, "num_predict_sampl": 39, "num_residual_block": 28, "num_sampl": 39, "num_test_sampl": 39, "num_train_sampl": 39, "num_val_sampl": 39, "num_work": 52, "number": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 49], "numer": 18, "numpi": [5, 6, 8, 9, 10, 11, 13, 14, 15, 37, 38, 49, 52], "o": [30, 41, 52], "object": [2, 3, 5, 6, 34, 35, 36], "observ": 49, "occur": [34, 35, 36], "octav": [37, 38], "octob": [27, 31], "offer": 51, "olaf": [27, 31], "one": 18, "ones": [4, 5, 6, 34, 35, 36, 51], "onli": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 50, 51], "oper": [4, 6, 37, 38], "optim": [21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 50], "option": [2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 49], "order": [4, 6, 8, 9, 10, 11, 12, 13, 14, 30, 37, 38, 49], "org": [29, 32], "organ": [49, 51], "origin": [5, 6, 27, 30, 31, 34, 35, 36], "other": [9, 10, 15, 34, 35, 36, 49, 51], "otherwis": 36, "our": 53, "out": 41, "out_channel": [23, 27, 29, 31, 33], "out_tensor_shap": 26, "output": [4, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 41, 50, 51], "output_tensor": 26, "over": [4, 6, 37, 38], "overlap": [9, 10, 15], "overrid": 51, "overridden": [4, 6, 37, 38], "own": 51, "packag": 0, "pad": [0, 9, 10, 15, 38, 52], "pad_at": [22, 23], "pad_h": 52, "pad_kwarg": [9, 10, 15], "pad_mod": [9, 10, 15], "pad_w": 52, "pad_width": [9, 10, 15], "padding_s": [22, 23], "page": 46, "pair": [5, 6], "panda": [8, 13], "papandr": [24, 27], "parallel": 53, "param": 52, "paramet": [17, 39, 50, 51], "parent": [9, 15], "part": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "partial": [29, 32], "pass": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 50, 51], "patch": [9, 10, 15, 27, 29, 30, 32], "patch_siz": [27, 29, 30, 32], "patched_array_read": [0, 9, 15], "patchedarrayread": [0, 9, 10, 15], "patchedzarrread": [0, 9, 15], "patchifi": [0, 30], "path": [4, 5, 6, 8, 9, 11, 14, 15, 27, 31, 34, 35, 36, 52], "pathlib": [9, 11, 15, 34, 35, 36, 52], "pathlik": [0, 9, 15, 34, 35, 36, 43], "pattern": [8, 13], "pd": [8, 13], "per": [29, 30, 32, 36], "perform": [4, 6, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37, 38, 51], "perlin": [37, 38], "perlinmask": [0, 37, 38], "philipp": [27, 31], "piec": 49, "pip": 46, "pipelin": [0, 4, 5, 6, 16, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 46, 50, 53], "pipeline_id": [0, 34, 35, 36, 51], "pipeline_info": [0, 34, 35, 36], "pixel": [2, 3, 18, 30, 49], "pixel_accuraci": [0, 2], "pixelaccuraci": [0, 2, 3], "pleas": [9, 15], "plt": 52, "png": [9, 11, 49, 52], "png_reader": [0, 9, 52], "pngreader": [0, 9, 11, 52], "po": 41, "point": [34, 35, 36, 51], "pool": [27, 31], "pos_emb": [30, 41], "posit": [25, 38, 41], "position_embed": [0, 40], "possibl": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "practic": 51, "pred": [2, 3, 30, 52], "predefin": 49, "predict": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 52], "predict_dataload": [0, 36, 39, 52], "predict_metr": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33], "predict_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "prefix": 49, "preprocess": 49, "primarili": [4, 6, 8, 9, 10, 11, 12, 13, 14], "print": [9, 10, 15, 51], "probabl": 18, "proceed": [27, 31], "process": [2, 3, 29, 32, 51], "produc": 31, "program": 46, "progress": 29, "properti": [34, 35, 36, 51], "propos": [27, 31], "provid": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 29, 32, 34, 35, 36, 37, 38, 51], "public": [34, 35, 36, 51], "publish": [27, 31], "pup": 29, "py": 51, "pyplot": 52, "python": [4, 5, 6, 9, 10, 15, 34, 35, 36, 51], "pytorch": [30, 34, 35, 36, 49], "queri": 49, "quit": [34, 35, 36], "r": [4, 5, 6], "rais": 52, "randint": [37, 38, 51], "random": [22, 23, 26, 28, 30, 51], "random_mask": [0, 30], "randomdatamodul": [0, 39], "rang": 49, "rate": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33], "ratio": 30, "raw": 18, "read": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 34, 35, 36, 49, 51], "reader": [0, 4, 5, 6, 7, 46, 52, 53], "real": 49, "receiv": [34, 35, 36], "recommend": [9, 15], "recomput": [34, 35, 36], "reconstruct": [5, 6, 27, 30, 31, 49], "record": 51, "reduc": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "reduct": 49, "reduction_ratio": 28, "refer": [9, 15, 30, 46], "reflect": 52, "regress": [36, 49], "regression_metr": 36, "regular": [8, 13], "relat": [4, 5, 6, 34, 35, 36, 46, 53], "relationship": 49, "relu": [28, 31], "remain": 49, "remov": 38, "repeat": [27, 31], "repositori": [34, 35, 36], "repres": [5, 6, 9, 10, 15, 29, 32], "represent": 30, "reproduc": 53, "reproduct": [34, 35, 36], "requir": [4, 6, 37, 38, 49], "rescal": [37, 38], "reshap": [8, 9, 10, 13, 15, 29, 32], "residual_block_cl": 28, "resiz": [0, 29, 44], "resnet1d_8": [0, 28], "resnet1dbas": [0, 28], "resnet50": [24, 27], "resnet50backbon": [0, 24], "resnet_1d": [0, 27], "resnet_block_cl": 28, "resnetblock": [0, 28], "resnetse1d_5": [0, 28], "resnetse1d_8": [0, 28], "resnetseblock": [0, 28], "resolut": [27, 31], "resourc": 51, "respect": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "respons": [4, 5, 6, 49], "restor": 30, "result": [0, 34, 35, 36, 51], "resum": 36, "rethink": [24, 27], "retriev": [4, 6, 9, 10, 11, 12, 13, 14], "return": [2, 3, 17, 18, 30, 32, 37, 38, 39, 41, 42, 49, 50, 51, 52], "return_singl": [4, 5, 6], "rgb": 31, "ronneberg": [27, 31], "row": [8, 13, 29, 32, 49], "run": [0, 22, 23, 26, 28, 34, 35, 36, 51, 52], "run_": [34, 35, 36], "run_count": [34, 35, 36], "run_statu": [0, 34, 35, 36], "runnabl": [34, 35, 36], "rwightman": 30, "same": [4, 5, 6, 9, 10, 15, 27, 31, 34, 35, 36, 37, 38, 49, 52], "sampl": [4, 5, 6, 8, 13, 30, 36, 37, 38, 50, 53], "save": [34, 35, 36], "save_run_statu": [34, 35, 36, 52], "scalabl": 51, "scale": [27, 29, 37, 38, 51], "scale_factor": [29, 44], "schroff": [24, 27], "script": 51, "seamless": 51, "seamlessli": [36, 51], "search": 46, "second": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 49, 50], "seed": [37, 38, 51], "segmant": [5, 6], "segment": [5, 6, 24, 27, 31, 52], "seismic": [51, 52], "select": [8, 13], "self": [8, 13, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 51, 52], "semant": [5, 6, 24, 27], "sensor_read": 49, "separ": 49, "seq_length": 32, "sequenc": [25, 32, 37, 38], "sequenti": [9, 10, 15], "seri": 49, "serial": 51, "serializ": [34, 35, 36], "serv": [9, 10, 15], "set": [34, 35, 36, 51, 52], "setr": [0, 27, 52], "setr_pup": [0, 27, 29, 52], "setup": [0, 39, 52], "sfm": [0, 27], "shape": [5, 6, 8, 9, 10, 13, 15, 22, 23, 25, 26, 28, 30, 38, 52], "shell": 51, "shortcutlay": [0, 26], "should": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 49, 50, 51], "show": 52, "shown": [9, 11, 14], "shuffl": [30, 52], "sign": [37, 38], "similar": 49, "simpl": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 36, 46, 50, 53], "simpledataset": [0, 4, 5, 6, 39], "simplelightningpipelin": [0, 36, 52], "simpler": 51, "simplereconstructionnet": [27, 31], "simplesupervisedmodel": [0, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 53], "singl": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 37, 38, 49], "size": [9, 10, 15, 25, 27, 29, 30, 31, 32, 41, 44, 49, 52], "skip": [27, 31], "slate": 51, "slice": [9, 14], "small": 18, "smooth": [17, 18], "so": [4, 5, 6], "solut": 53, "some": [34, 35, 36, 49, 51], "sourc": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14], "specif": [49, 51], "specifi": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 36, 37, 38, 50, 51], "springer": [27, 31], "squar": [29, 32], "squeez": [0, 38, 52], "squeezeandexcitation1d": [0, 28], "ssl": 52, "stabil": 18, "stage": [36, 39, 52], "start": [9, 11, 14, 51], "start_tim": 51, "state": [2, 3, 51], "static": [34, 35, 36], "statu": [34, 35, 36, 51], "stem": [29, 32], "step": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 50], "step_nam": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "stide": [9, 10, 15], "storag": [4, 6, 8, 9, 10, 11, 12, 13, 14, 49, 51], "store": [9, 15, 34, 35, 36, 49, 51], "str": [8, 9, 10, 11, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 52], "stride": [9, 10, 15, 26], "string": [8, 13], "structur": [4, 6, 8, 9, 10, 11, 12, 13, 14, 34, 35, 36, 46, 53], "style": 49, "subarrai": [9, 10, 15], "subclass": [4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 37, 38], "submodul": 0, "subpackag": 0, "suggest": 49, "suitabl": 51, "sum": 51, "sum_of_distances_pipelin": 51, "summari": [5, 6], "sumofdist": 51, "super": [51, 52], "supervis": [4, 5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 50], "supervised_dataset": [0, 5, 52], "supervisedreconstructiondataset": [0, 5, 6, 52], "support": [9, 10, 15, 51], "synchron": [2, 3], "system": [34, 35, 36], "system_info": [0, 34, 35, 36], "t": [4, 5, 6, 51], "tabular_read": [0, 8, 9], "tabularread": [0, 8, 13], "take": [4, 6, 37, 38], "target": [2, 3, 5, 6, 18, 36, 49, 50], "target_h_s": [38, 52], "target_w_s": [38, 52], "task": [5, 6, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 49, 51, 52], "tensor": [0, 2, 3, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 50], "test": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 53], "test_dataload": [0, 36, 39, 52], "test_dataset": 52, "test_img_read": 52, "test_label_read": 52, "test_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 52], "test_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33], "th": 49, "thei": [34, 35, 36, 37, 38, 49], "them": [8, 9, 10, 13, 15], "thi": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 37, 38, 49, 50, 51], "third": [9, 10, 15, 49], "thoma": [27, 31], "though": [34, 35, 36, 51], "threshold": 29, "through": [21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 51], "thu": [8, 9, 11, 13, 14], "tiff": [9, 14, 49, 52], "tiff_read": [0, 9, 52], "tiffread": [0, 9, 14, 52], "time": [4, 6, 8, 9, 10, 11, 12, 13, 14, 34, 35, 36, 49, 51], "timm": 30, "to_tensor": [0, 18, 42], "todo": 52, "togeth": [4, 5, 6, 49], "token": 30, "too": [9, 15], "top": 50, "torch": [2, 3, 4, 5, 6, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 42, 44, 49, 52], "torchmetr": [2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 52], "torchvis": [29, 32], "total": 52, "tpu": 52, "traceabl": [34, 35, 36], "track": [34, 35, 36, 51], "train": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 46, 53], "train_dataload": [0, 36, 39, 52], "train_dataset": 52, "train_img_read": 52, "train_label_read": 52, "train_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 52], "train_path": 52, "trainabl": 52, "trainer": [0, 36, 53], "training_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "transform": [0, 4, 5, 6, 16, 25, 27, 29, 30, 32, 49, 52], "transform_dim": 25, "transformer_activ": 25, "transformer_dim": 25, "transformer_dropout": 25, "transformpipelin": [0, 37, 38], "translat": 32, "transpos": 52, "tree": 30, "troubleshoot": 51, "true": [4, 5, 6, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 44, 51, 52], "tupl": [4, 5, 6, 8, 9, 10, 13, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 39, 49, 50, 51, 52], "turn": 49, "tutori": 46, "two": [5, 6, 36, 49, 51], "type": [0, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 49, 52], "typic": [27, 31, 49], "u": [27, 31], "under": 45, "unet": [0, 27], "union": [4, 5, 6, 8, 9, 11, 13, 14], "uniqu": [34, 35, 36, 51], "unit": 53, "unknown": 36, "unless": 49, "unpatchifi": [0, 30], "unsqueez": [0, 38], "unsupervis": [4, 5, 6, 49], "up": [27, 31], "up_scal": [27, 29], "updat": [0, 2, 3, 51], "upon": 51, "upper": [9, 10, 15], "upsampl": [0, 27, 29, 31, 40], "upscal": 31, "url": 49, "us": [4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 46, 47, 51, 53], "usag": 51, "use_bottleneck": 26, "use_residu": 26, "user": [34, 35, 36, 51], "usual": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 37, 38, 49], "util": [0, 4, 5, 6, 9, 15, 16, 34, 35, 36, 49, 51, 52], "val": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 52], "val_dataload": [0, 39, 52], "val_dataset": 52, "val_img_read": 52, "val_label_read": 52, "val_metr": [21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 52], "valid": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36], "validation_step": [0, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33], "valu": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 49, 51], "valueerror": [9, 11, 14, 36, 52], "vari": 49, "variabl": [34, 35, 36], "vector": 49, "veri": [21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 50], "versatil": [34, 35, 36, 51], "version": 51, "version_3": 52, "via": [49, 51], "vision": [29, 32], "vision_transform": [29, 32], "visiontransform": 30, "vit": [0, 27, 29], "w": [27, 30, 31, 41, 52], "wa": [9, 10, 15, 27, 31], "wai": 49, "warn": [29, 44], "we": [4, 5, 6, 49, 51, 52], "weight": [27, 29, 32], "when": [4, 5, 6, 9, 10, 15, 34, 35, 36], "where": [4, 5, 6, 9, 10, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 49, 50], "whether": [2, 3, 25, 27, 29, 30], "which": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 31, 33, 34, 35, 36, 38, 49, 50], "while": 49, "whole": 36, "whose": [37, 38], "width": [9, 10, 15, 27, 29, 30, 31, 32, 41], "wise": 49, "wisenet": [0, 27], "word": [4, 6, 37, 38], "work": [34, 35, 36, 51, 53], "workflow": 51, "working_dir": 51, "workspac": [51, 52], "wrapper": [24, 27, 31], "write": 51, "x": [18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 42, 44, 51, 52], "x1": 31, "x2": 31, "y": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36, 51], "y_hat": [17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 36], "y_pred": [18, 36], "y_true": [18, 36], "yaml": [34, 35, 36, 51], "you": [47, 51], "your": 51, "zarr": [9, 15], "zarr_read": [0, 9], "zero": [18, 37, 38], "zeropadder2d": [0, 22, 23]}, "titles": ["Programming Reference", "minerva.analysis", "minerva.analysis.metrics", "minerva.analysis.metrics.pixel_accuracy", "minerva.data.datasets.base", "minerva.data.datasets", "minerva.data.datasets.supervised_dataset", "minerva.data", "minerva.data.readers.csv_reader", "minerva.data.readers", "minerva.data.readers.patched_array_reader", "minerva.data.readers.png_reader", "minerva.data.readers.reader", "minerva.data.readers.tabular_reader", "minerva.data.readers.tiff_reader", "minerva.data.readers.zarr_reader", "minerva", "minerva.losses._functional", "minerva.losses.dice", "minerva.losses", "minerva.models", "minerva.models.nets.base", "minerva.models.nets.cnn_ha_etal", "minerva.models.nets.cnn_pf", "minerva.models.nets.deeplabv3", "minerva.models.nets.imu_transformer", "minerva.models.nets.inception_time", "minerva.models.nets", "minerva.models.nets.resnet_1d", "minerva.models.nets.setr", "minerva.models.nets.sfm", "minerva.models.nets.unet", "minerva.models.nets.vit", "minerva.models.nets.wisenet", "minerva.pipelines.base", "minerva.pipelines", "minerva.pipelines.lightning_pipeline", "minerva.transforms", "minerva.transforms.transform", "minerva.utils.data", "minerva.utils", "minerva.utils.position_embedding", "minerva.utils.tensor", "minerva.utils.typing", "minerva.utils.upsample", "Contributing", "Welcome to Minerva\u2019s documentation!", "Installation Guide", "minerva", "Datasets, Readers, and Related Data Structures", "Models", "Pipelines", "A Simple Example of training a model using Minerva", "Tutorials"], "titleterms": {"": [46, 52], "1": 51, "2": 51, "3": 51, "4": 51, "5": 51, "6": 51, "A": 52, "The": 50, "_function": 17, "activ": 49, "analysi": [1, 2, 3], "attribut": [15, 18, 30, 34, 36, 43], "base": [4, 21, 34], "class": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 49, 50], "cli": 51, "clonabl": 51, "cnn_ha_et": 22, "cnn_pf": 23, "composit": 51, "con": 49, "config": 52, "content": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46], "contribut": 45, "csv_reader": 8, "data": [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 39, 49, 52], "dataset": [4, 5, 6, 49], "deeplabv3": 24, "definit": 49, "dice": 18, "distribut": 51, "document": 46, "environ": 51, "exampl": [4, 5, 6, 9, 10, 15, 49, 52], "function": [17, 18, 29, 30, 36, 39, 41, 42, 44], "gener": 52, "guid": 47, "how": 49, "human": 49, "imag": 49, "implement": 49, "imu_transform": 25, "inception_tim": 26, "indic": 46, "inerti": 49, "instal": 47, "integr": 51, "kei": 49, "lightning_pipelin": 36, "log": 51, "loss": [17, 18, 19], "metric": [2, 3], "minerva": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 52], "model": [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 52], "modul": [3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 41, 42, 43, 44, 52], "monitor": 51, "net": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33], "note": [9, 15], "our": [49, 52], "packag": [2, 5, 9, 27, 35, 37], "parallel": 51, "paramet": [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38], "patched_array_read": 10, "pip": 47, "pipelin": [34, 35, 36, 51, 52], "pixel_accuraci": 3, "png_reader": 11, "position_embed": 41, "pro": 49, "program": 0, "rais": [5, 6, 9, 11, 14, 18, 29, 34, 35, 36], "reader": [8, 9, 10, 11, 12, 13, 14, 15, 49], "recognit": 49, "refer": [0, 24, 27, 31], "relat": 49, "reproduc": 51, "resnet_1d": 28, "return": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36], "sampl": 49, "segment": 49, "sensor": 49, "setr": 29, "sfm": 30, "simpl": 52, "simplesupervisedmodel": 50, "solut": 49, "structur": 49, "submodul": [2, 5, 9, 19, 27, 35, 37, 40], "subpackag": [1, 7, 16, 20], "supervised_dataset": 6, "tabl": 46, "tabular_read": 13, "tensor": 42, "test": 52, "tiff_read": 14, "train": 52, "trainer": 52, "transform": [37, 38], "tutori": 53, "type": 43, "unet": 31, "unit": 49, "upsampl": 44, "us": [49, 52], "util": [39, 40, 41, 42, 43, 44], "vit": 32, "welcom": 46, "wisenet": 33, "work": 49, "zarr_read": 15}}) \ No newline at end of file |