From 28e29fd4a1136cc66b784cbabc0527bd71beb227 Mon Sep 17 00:00:00 2001 From: Gabriel Gutierrez Date: Fri, 3 May 2024 09:52:51 -0300 Subject: [PATCH] chore: Update position_embedding.py and test files --- minerva/utils/position_embedding.py | 6 +++--- tests/models/nets/test_setr.py | 14 +++++++------- tests/models/nets/test_sfm.py | 2 +- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/minerva/utils/position_embedding.py b/minerva/utils/position_embedding.py index bc361ca..bf793d1 100644 --- a/minerva/utils/position_embedding.py +++ b/minerva/utils/position_embedding.py @@ -19,8 +19,8 @@ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ - grid_h = np.arange(grid_size, dtype=np.float32) - grid_w = np.arange(grid_size, dtype=np.float32) + grid_h = np.arange(grid_size, dtype=float) + grid_w = np.arange(grid_size, dtype=float) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) @@ -49,7 +49,7 @@ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): out: (M, D) """ assert embed_dim % 2 == 0 - omega = np.arange(embed_dim // 2, dtype=np.float) + omega = np.arange(embed_dim // 2, dtype=float) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) diff --git a/tests/models/nets/test_setr.py b/tests/models/nets/test_setr.py index b28a048..4909691 100644 --- a/tests/models/nets/test_setr.py +++ b/tests/models/nets/test_setr.py @@ -5,10 +5,10 @@ def test_wisenet_loss(): - model = SETR_PUP() + model = SETR_PUP(image_size=16) batch_size = 2 - x = torch.rand(2, 3, 512, 512) - mask = torch.rand(2, 1, 512, 512).long() + x = torch.rand(2, 3, 16, 16) + mask = torch.rand(2, 1, 16, 16).long() # Do the training step loss = model.training_step((x, mask), 0).item() @@ -17,11 +17,11 @@ def test_wisenet_loss(): def test_wisenet_predict(): - model = SETR_PUP() + model = SETR_PUP(image_size=16) batch_size = 2 - mask_shape = (batch_size, 1000, 512, 512) # (2, 1, 500, 500) - x = torch.rand(2, 3, 512, 512) - mask = torch.rand(2, 1, 512, 512).long() + mask_shape = (batch_size, 1000, 16, 16) # (2, 1, 500, 500) + x = torch.rand(2, 3, 16, 16) + mask = torch.rand(2, 1, 16, 16).long() # Do the prediction step preds = model.predict_step((x, mask), 0) diff --git a/tests/models/nets/test_sfm.py b/tests/models/nets/test_sfm.py index 8f1f8ac..46f6ed2 100644 --- a/tests/models/nets/test_sfm.py +++ b/tests/models/nets/test_sfm.py @@ -20,7 +20,7 @@ ] -# @pytest.mark.parametrize("model_cls,img_size", test_models) +@pytest.mark.parametrize("model_cls,img_size", test_models) def test_sfm_pretrain_forward(model_cls, img_size): # Test the class instantiation model = model_cls(img_size=img_size, in_chans=1, norm_pix_loss=False)