-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplotting_features.py
executable file
·31 lines (24 loc) · 1.53 KB
/
plotting_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import matplotlib.pyplot as plt
data = np.loadtxt("train.csv", delimiter=",", skiprows=1)
features = np.loadtxt("train_ewald_sum_data.csv", delimiter=",", skiprows=0)
#features = np.loadtxt("train_nn_bond_parameters_data.csv", delimiter=",", skiprows=0)
#features = np.loadtxt("train_symmetries_data.csv", delimiter=",", skiprows=0)
#features = np.loadtxt("train_unit_cell_data.csv", delimiter=",", skiprows=0)
#features = np.loadtxt("train_angles_and_rs_data.csv", delimiter=",", skiprows=0)
custom_data = np.hstack((features, data))
print("custom_data.shape: {0}".format(custom_data.shape))
plt.figure()
#plt.scatter(features[:, 5], data[:, -1])
#plt.hist2d(data[:, -1], features[:, 1], bins=60)
index = 2
target = -1
bg_index = 14
#plt.scatter(custom_data[custom_data[:, bg_index] == 10, index], custom_data[custom_data[:, bg_index] == 10, target], label="10")
#plt.scatter(custom_data[custom_data[:, bg_index] == 20, index], custom_data[custom_data[:, bg_index] == 20, target], label="20")
#plt.scatter(custom_data[custom_data[:, bg_index] == 30, index], custom_data[custom_data[:, bg_index] == 30, target], label="30")
plt.scatter(custom_data[custom_data[:, bg_index] == 40, index], custom_data[custom_data[:, bg_index] == 40, target], label="40")
#plt.scatter(custom_data[custom_data[:, bg_index] == 60, index], custom_data[custom_data[:, bg_index] == 60, target], label="60")
plt.scatter(custom_data[custom_data[:, bg_index] == 80, index], custom_data[custom_data[:, bg_index] == 80, target], label="80")
plt.legend(ncol=3)
plt.show()