-
Notifications
You must be signed in to change notification settings - Fork 2
/
NEU_train.py
189 lines (166 loc) · 7.53 KB
/
NEU_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#import libraries
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # specify which GPU(s) to be used
import time
import warnings
import random
import numpy as np
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from losses import*
from metrics import*
from NEU_dataloaders import*
from model import*
from NEU_utilities import get_logger, create_dir
import torch.backends.cudnn as cudnn
warnings.filterwarnings("ignore")
seed = 1234
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
# save_path = '/media/disk2t_/Dejene/DD/NEU-DualSeg/logs/'
class Trainer(object):
'''This class takes care of training and validation of our model'''
def __init__(self, model):
self._init_logger()
self.num_workers = 6
self.patience = 0
# self.best_dice = 0
# self.best_loss_score = False
self.batch_size = {"train": 16, "val": 16}
self.accumulation_steps = 128 // self.batch_size['train']
self.lr = 5e-4
self.num_epochs = 300
self.best_loss = float("inf")
self.phases = ["train", "val"]
self.device = torch.device("cuda")
# torch.set_default_tensor_type("torch.cuda.FloatTensor")
self.net = model
# self.criterion = torch.nn.BCEWithLogitsLoss()
# self.criterion = BCESoftDiceLoss(w1=0.4, w2=0.8)
self.criterion = BCEDiceLoss()
# self.criterion = FocalLoss()
# self.criterion = DiceLoss()
# self.optimizer = RAdam(self.net.parameters(), lr=self.lr)
self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
self.scheduler = ReduceLROnPlateau(self.optimizer, mode="min", patience=10, verbose=True)
self.net = self.net.to(self.device)
# self.save_path = '/media/disk2t_/Dejene/DD/supervised_neu/ResT-small-FPNhead-notebook/Checkpoints/'
cudnn.benchmark = True
self.dataloaders = {
phase: dataloaders(
data_folder=data_folder,
df_path=train_df_path,
phase=phase,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
batch_size=self.batch_size[phase],
num_workers=self.num_workers,
)
for phase in self.phases
}
self.losses = {phase: [] for phase in self.phases}
self.iou_scores = {phase: [] for phase in self.phases}
self.dice_scores = {phase: [] for phase in self.phases}
# self.save_tbx_log = self.save_path + '/tbx_logs'
# self.writer = SummaryWriter(self.save_tbx_log)
def forward(self, images, targets):
images = images.to(self.device)
masks = targets.to(self.device)
outputs = self.net(images)
loss = self.criterion(outputs, masks)
return loss, outputs
def _init_logger(self):
log_dir = '.../model_weights/'
self.logger = get_logger(log_dir)
print('RUNDIR: {}'.format(log_dir))
self.save_path = log_dir
self.save_tbx_log = self.save_path + '/tbx_log'
self.writer = SummaryWriter(self.save_tbx_log)
def iterate(self, epoch, phase):
meter = Meter(phase, epoch)
start = time.strftime("%H:%M:%S")
print(f"Starting epoch: {epoch} | phase: {phase} | ⏰: {start}")
batch_size = self.batch_size[phase]
self.net.train(phase == "train")
dataloader = self.dataloaders[phase]
running_loss = 0.0
total_batches = len(dataloader)
# tk0 = tqdm(dataloader, total=total_batches)
self.optimizer.zero_grad()
for itr, batch in enumerate(dataloader): # replace `dataloader` with `tk0` for tqdm
images, targets = batch
loss, outputs = self.forward(images, targets)
loss = loss / self.accumulation_steps
if phase == "train":
loss.backward()
if (itr + 1 ) % self.accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
running_loss += loss.item()
outputs = outputs.detach().cpu()
meter.update(targets, outputs)
# tk0.set_postfix(loss=(running_loss / ((itr + 1))))
epoch_loss = (running_loss * self.accumulation_steps) / total_batches
dice, iou = epoch_log(phase, epoch, epoch_loss, meter, start)
if phase == "train":
self.writer.add_scalar('Train/Loss', epoch_loss, epoch)
self.writer.add_scalar('Train/DSC', dice, epoch)
self.writer.add_scalar('Train/IoU', iou, epoch)
else:
self.writer.add_scalar('Val/Loss', epoch_loss, epoch)
self.writer.add_scalar('Val/DSC', dice, epoch)
self.writer.add_scalar('Val/IoU', iou, epoch)
# self.writer.add_scalar('Info/lr', lr_, epoch)
self.losses[phase].append(epoch_loss)
self.dice_scores[phase].append(dice)
self.iou_scores[phase].append(iou)
# self.writer.add_scalar('Val_Dices', dice['val'], epoch)
torch.cuda.empty_cache()
return epoch_loss, dice
def start(self):
for epoch in range(0, self.num_epochs):
self.iterate(epoch, "train")
state = {
"epoch": epoch,
"best_loss": self.best_loss,
"state_dict": self.net.state_dict(),
"optimizer": self.optimizer.state_dict(),
}
with torch.no_grad():
val_loss, dice = self.iterate(epoch, "val")
# self.writer.add_scalar('Val/val_loss', val_loss, epoch)
# self.scheduler.step(val_loss)
self.scheduler.step(val_loss)
if val_loss < self.best_loss:
# if self.best_dice < dice:
print("******** New optimal found, saving state ********")
state["best_loss"] = self.best_loss = val_loss
Checkpoints_Path = self.save_path + '/Checkpoints'
if not os.path.exists(Checkpoints_Path):
os.makedirs(Checkpoints_Path)
torch.save(state, Checkpoints_Path + '/NEU_ResT_S_UperHead.pth')
self.patience = 0
# self.logger.info('current patience :{}'.format(self.patience))
else:
# self.save_best_model_1 = False
self.patience += 1
# self.logger.info('current patience :{}'.format(self.patience))
for param_group in self.optimizer.param_groups:
lr_ = param_group['lr'] #For plotting the learning rate change during the training process
self.writer.add_scalar('Info/lr', lr_, epoch)
self.logger.info('current patience :{}'.format(self.patience))
print('==================================================================================')
print()
if __name__ == '__main__':
# Training data path
train_df_path = ".../data/DD/NEU_data/NEU_train_files.csv"
data_folder = ".../data/NEU_data/"
# test_data_folder = ".../data/NEU_data/test_set"
model_trainer = Trainer(model)
model_trainer.start()