Skip to content

Commit

Permalink
Merge pull request #35 from djgagne/djgagne
Browse files Browse the repository at this point in the history
Environment.yml and other compatibility updates
  • Loading branch information
djgagne authored Jan 16, 2021
2 parents 19ab4b6 + c166fb8 commit dbc12b7
Show file tree
Hide file tree
Showing 49 changed files with 185 additions and 186 deletions.
17 changes: 5 additions & 12 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,21 +1,14 @@
language: python
env:
- PYTHON_VERSION=2.7 IPYTHON_KERNEL=python2
- PYTHON_VERSION=3.6 IPYTHON_KERNEL=python3
- PYTHON_VERSION=3.7 IPYTHON_KERNEL=python3

- PYTHON_VERSION=3.8 IPYTHON_KERNEL=python3
before_install:
- wget -q https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
- sh Miniconda3-latest-Linux-x86_64.sh -b -p /home/travis/miniconda
- export PATH=/home/travis/miniconda/bin:$PATH
install:
- conda create -n testenv --yes -c conda-forge python=$PYTHON_VERSION pip numpy scipy matplotlib
- source activate testenv
- conda install --yes -c conda-forge pygrib scikit-learn scikit-image netcdf4 basemap
- pip install arrow
- pip install pytest
- pip install .
- conda env create --yes -f environment.yml
- source activate hagelslag
script:
- py.test
- pytest
notifications:
email: true
email: true
33 changes: 27 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,11 @@ The package contains modules for storm identification and tracking, spatio-tempo
machine learning model training to predict hazard intensity as well as space and time translations.

### Citation
If you employ hagelslag in your research, please acknowledge its use with the following citation:
If you employ hagelslag in your research, please acknowledge its use with the following citations:

Gagne, D. J., A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, M. Xue, 2017: Storm-Based Probabilistic Hail
Forecasting with Machine Learning Applied to Convection-Allowing Ensembles, Wea. Forecasting, 32, 1819-1840.
https://doi.org/10.1175/WAF-D-17-0010.1.

Gagne II, D. J., A. McGovern, N. Snook, R. Sobash, J. Labriola, J. K. Williams, S. E. Haupt, and M. Xue, 2016:
Hagelslag: Scalable object-based severe weather analysis and forecasting. Proceedings of the Sixth Symposium on
Expand All @@ -21,7 +25,8 @@ djgagne at ou dot edu.

### Requirements

Hagelslag is compatible with Python 2.7 and 3.5. Hagelslag is easiest to install with the help of the Anaconda Python Distribution, but it should work with other
Hagelslag is compatible with Python 3.6 or newer. Hagelslag is easiest to install with the help of the [Miniconda
Python Distribution](https://docs.conda.io/en/latest/miniconda.html), but it should work with other
Python setups as well. Hagelslag requires the following packages and recommends the following versions:

* numpy >= 1.10
Expand All @@ -30,14 +35,30 @@ Python setups as well. Hagelslag requires the following packages and recommends
* scikit-learn >= 0.16
* pandas >= 0.15
* arrow >= 0.8.0
* basemap
* pyproj
* netCDF4-python
* xarray
* jupyter
* ncepgrib2
* pygrib
* cython
* pip
* sphinx
* mock

Install dependencies with the following commands:
```
git clone https://github.com/djgagne/hagelslag.git
cd ~/hagelslag
conda env create -f environment.yml
conda activate hagelslag
```

### Installation
Install the latest version of hagelslag with the following command from the top-level hagelslag directory (where setup.py
is):
`pip install .`

To install hagelslag, enter the top-level directory of the package and run the standard python setup command:

python setup.py install

Hagelslag will install the libraries in site-packages and will also install 3 applications into the `bin` directory
of your Python installation.
Expand Down
1 change: 1 addition & 0 deletions config/ncar_rt2020_data.config
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ from datetime import datetime

work_path = "/glade/work/sobash/NSC_objects/"
scratch_path = "/glade/scratch/dgagne/"
#dates = pd.read_csv("/glade/work/")
#dates = pd.read_csv("/glade/work/ahijevyc/share/NSC.dates",
# header=None)[0].astype(str).str.pad(14, side="right",fillchar="0")
#date_index = pd.DatetimeIndex(dates)
Expand Down
2 changes: 1 addition & 1 deletion config/ncar_storm_data_3km.config
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ config = dict(dates=date_index.to_pydatetime(),
watershed_variable="W_UP_MAX",
ensemble_name="NCARSTORM",
ensemble_members=ensemble_members,
model_path="/glade/p/nmmm0039/3KM_WRF_POST/",
model_path="/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/",
model_watershed_params=(10, 1, 80, 100, 60),
size_filter=12,
gaussian_window=1,
Expand Down
92 changes: 92 additions & 0 deletions config/ncar_storm_data_3km_2020.config
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
#!/usr/bin/env python
from hagelslag.processing.ObjectMatcher import shifted_centroid_distance,closest_distance
from hagelslag.processing.ObjectMatcher import centroid_distance, time_distance

import pandas as pd
import numpy as np
import os, sys
from datetime import datetime

work_path = "/glade/work/dgagne/NSC_data/"
scratch_path = "/glade/scratch/dgagne/"
dates = pd.read_csv("/glade/u/home/dgagne/hagelslag/config/ncar_storm_dates_3km_new.txt",
header=None)[0].astype(str).str.pad(14, side="right",fillchar="0")
date_index = pd.DatetimeIndex(dates)
ensemble_members = ["d01"]
pressure_levels = ["850", "700", "500", "300"]
pres_vars = ["GHT_PL", "T_PL", "TD_PL", "U_PL", "V_PL"]
full_pres_vars = []
for pres_var in pres_vars:
for pressure_level in pressure_levels:
full_pres_vars.append(pres_var + "_" + pressure_level)
REFL_1KM_AGL = {
"name": "REFL_1KM_AGL",
"params": (30, 1, 80, 300, 60),
"object_matcher_params":([shifted_centroid_distance],np.array([1.0]),np.array([24000]))
}
W_UP_MAX = {
"name": "W_UP_MAX",
"params": (10, 1, 80, 300, 60),
"object_matcher_params":([closest_distance,shifted_centroid_distance],np.array([0.9,0.1]),np.array([1,24000]))
}
REFL_COM = {
"name": "REFL_COM",
"params": (40, 1, 80, 300, 50),
"object_matcher_params":([shifted_centroid_distance],np.array([1.0]),np.array([24000]))
}
segmentation_approach = "hyst" # "hyst", "ws", or "ew"
REFL_COM["params"] = (35, 50)
watershed_dict = REFL_COM
watershed_variable = watershed_dict["name"]
output_prefix = work_path + "track_data_nsc_3km_"+watershed_variable+"_"+segmentation_approach
config = dict(dates=date_index.to_pydatetime(),
start_hour=1,
end_hour=35, # Don't go above maximum lead time-1 (35) or diagnostics file for storm_variables won't be found
watershed_variable=watershed_variable,
ensemble_name="NCARSTORM",
ensemble_members=ensemble_members,
model_path="/glade/p/mmm/parc/sobash/NSC/3KM_WRF_POST_12sec_ts/",
segmentation_approach = segmentation_approach,
model_watershed_params=watershed_dict["params"],
size_filter=12,
gaussian_window=0,
#mrms_path= work_path + "mrms_ncar/",
mrms_path=None,
mrms_variable="MESH_Max_60min_00.50",
mrms_watershed_params=(13, 1, 125, 100, 100),
object_matcher_params=watershed_dict["object_matcher_params"],
track_matcher_params=([centroid_distance, time_distance],
np.array([80000, 2])),
storm_variables=["UP_HELI_MAX", "GRPL_MAX", "WSPD10MAX", "W_UP_MAX", "W_DN_MAX",
"RVORT1_MAX", "RVORT5_MAX", "UP_HELI_MAX03", "UP_HELI_MAX01",
"UP_HELI_MIN", "REFL_COM", "REFL_1KM_AGL", "REFD_MAX",
"PSFC", "T2", "Q2", "TD2", "U10", "V10"] + full_pres_vars,
#"UP_HELI_MIN", "HAIL_MAXK1", "HAIL_MAX2D", "HAILCAST_DIAM_MAX",
potential_variables=["SBLCL", "MLLCL", "SBCAPE", "MLCAPE", "MUCAPE", "SBCINH", "MLCINH",
"USHR1", "VSHR1", "USHR6", "VSHR6", "U_BUNK", "V_BUNK",
"SRH03", "SRH01", "PSFC", "T2", "Q2", "TD2", "U10", "V10"],
#"PSFC", "T2", "Q2", "TD2", "U10", "V10"] + full_pres_vars,
future_variables=["REFL_COM", "UP_HELI_MAX", "GRPL_MAX", "HAIL_MAXK1", "UP_HELI_MAX03"],
tendency_variables=[],
shape_variables=["area", "eccentricity", "major_axis_length", "minor_axis_length", "orientation"],
#variable_statistics=["mean", "max", "min", "std",
# "percentile_10", "percentile_25", "percentile_50", "percentile_75", "percentile_90"],
variable_statistics=["mean", "max", "min"],
csv_path = output_prefix + "_csv/",
geojson_path = output_prefix + "_json/",
nc_path = output_prefix + "_nc/",
patch_radius=40,
unique_matches=True,
closest_matches=True,
match_steps=True,
train=False,
single_step=True,
label_type="gamma",
model_map_file="/glade/u/home/dgagne/hagelslag/mapfiles/ncar_storm_map_3km.txt",
mask_file="/glade/u/home/dgagne/hagelslag/mapfiles/ncar_storm_us_mask_3km.nc")
if not os.path.exists(config["csv_path"]):
print("csv_path doesn't exist. Try mkdir",config["csv_path"])
sys.exit(1)
if not os.path.exists(config["nc_path"]):
print("nc_path doesn't exist. Try mkdir",config["nc_path"])
sys.exit(1)
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
79 changes: 17 additions & 62 deletions demos/obj_tracking.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,18 +14,16 @@
from matplotlib.patches import Polygon, PathPatch
from matplotlib.collections import PatchCollection
from datetime import datetime, timedelta
from mpl_toolkits.basemap import Basemap
from scipy.ndimage import gaussian_filter, find_objects
from copy import deepcopy
from mysavfig import mysavfig
import pdb, sys, argparse, os


# In[2]:

from hagelslag.processing import EnhancedWatershed
from hagelslag.processing.EnhancedWatershedSegmenter import EnhancedWatershed
from hagelslag.data import ModelOutput
from hagelslag.processing import ObjectMatcher, shifted_centroid_distance, centroid_distance, closest_distance
from hagelslag.processing.ObjectMatcher import ObjectMatcher, closest_distance
from hagelslag.processing import STObject

parser = argparse.ArgumentParser(description='object tracker')
Expand All @@ -36,7 +34,8 @@
parser.add_argument('-v','--verbose', action="store_true", help='print more output. useful for debugging')
args = parser.parse_args()

if args.verbose: print args
if args.verbose:
print(args)

odir = '/glade/p/work/ahijevyc/hagelslag/out/'
model_path = "/glade/scratch/ahijevyc/VSE/"
Expand Down Expand Up @@ -105,24 +104,19 @@ def add_grid(m):
# If it does, see if 'field' is a variable.
ncf = Dataset(dfile)
if field in ncf.variables:
print dfile
print(dfile)
model_grid.data.append(ncf.variables[field][0,:,:])
ncf.close()
break
ncf.close()
d += deltat

print model_grid.lon.shape, np.maximum.reduce(model_grid.data).shape # max across time dimension
print model_grid.data[0].max(), model_grid.data[-1].max(), np.maximum.reduce(model_grid.data).max()
print(model_grid.lon.shape, np.maximum.reduce(model_grid.data).shape) # max across time dimension
print(model_grid.data[0].max(), model_grid.data[-1].max(), np.maximum.reduce(model_grid.data).max())

basemap = Basemap(resolution="l",
llcrnrlon=model_grid.lon.min()+5., urcrnrlon=model_grid.lon.max()-.1,
llcrnrlat=model_grid.lat.min()+1.5, urcrnrlat=model_grid.lat.max()-.5,
projection='lcc',lat_1=np.mean(model_grid.lat),
lat_0=np.mean(model_grid.lat),lon_0=np.mean(model_grid.lon))
plt.figure(figsize=(10,8))
add_grid(basemap)
basemap.contourf(model_grid.lon, model_grid.lat,

plt.contourf(model_grid.lon, model_grid.lat,
np.maximum.reduce(model_grid.data), # max across time dimension
levels,
extend="max",
Expand All @@ -133,24 +127,23 @@ def add_grid(m):
end_date.strftime("%d %b %Y %H:%M")),
fontweight="bold", fontsize=14)
dtstr = "_"+member+run_date.strftime("_%Y%m%d%H")
ret = mysavfig(odir+"uh_swaths/"+field+"_swaths"+dtstr+".png")
ret = plt.savefig(odir+"uh_swaths/"+field+"_swaths"+dtstr+".png")


def get_forecast_objects(model_grid, ew_params, min_size, gaussian_window):
ew = EnhancedWatershed(*ew_params)
model_objects = []
print "Find model objects Hour:",
print("Find model objects Hour:")
for h in range(int((model_grid.end_date - model_grid.start_date).total_seconds()/deltat.total_seconds())+1):
print h,
print(h)
hour_labels = ew.size_filter(ew.label(gaussian_filter(model_grid.data[h], gaussian_window)), min_size)
obj_slices = find_objects(hour_labels)
num_slices = len(obj_slices)
model_objects.append([])
if num_slices > 0:
fig, ax = plt.subplots()
add_grid(basemap)
t = basemap.contourf(model_grid.lon,model_grid.lat,hour_labels,np.arange(0,num_slices+1)+0.5,extend="max",cmap="Set1",latlon=True,title=str(run_date)+" "+field+" "+str(h))
ret = mysavfig(odir+"enh_watershed_ex/ew{0:02d}.png".format(h))
t = plt.contourf(model_grid.lon,model_grid.lat,hour_labels,np.arange(0,num_slices+1)+0.5,extend="max",cmap="Set1",latlon=True,title=str(run_date)+" "+field+" "+str(h))
ret = plt.savefig(odir+"enh_watershed_ex/ew{0:02d}.png".format(h))
for s, sl in enumerate(obj_slices):
model_objects[-1].append(STObject(model_grid.data[h][sl],
#np.where(hour_labels[sl] > 0, 1, 0),
Expand Down Expand Up @@ -178,7 +171,7 @@ def get_forecast_objects(model_grid, ew_params, min_size, gaussian_window):
def track_forecast_objects(input_model_objects, model_grid, object_matcher):
model_objects = deepcopy(input_model_objects)
hours = np.arange(int((model_grid.end_date-model_grid.start_date).total_seconds()/deltat.total_seconds()) + 1)
print "hours = ",hours
print("hours = ",hours)
tracked_model_objects = []
for h in hours:
past_time_objs = []
Expand All @@ -189,12 +182,12 @@ def track_forecast_objects(input_model_objects, model_grid, object_matcher):
past_time_objs.append(obj)
# If no objects existed in the last time step, then consider objects in current time step all new
if len(past_time_objs) == 0:
print "time",h, " no objects existed in the last time step. consider objects in current time step all new"
print("time",h, " no objects existed in the last time step. consider objects in current time step all new")
tracked_model_objects.extend(deepcopy(model_objects[h]))
# Match from previous time step with current time step
elif len(past_time_objs) > 0 and len(model_objects[h]) > 0:
assignments = object_matcher.match_objects(past_time_objs, model_objects[h], h - 1, h)
print "assignments:", assignments
print("assignments:", assignments)
unpaired = range(len(model_objects[h]))
for pair in assignments:
past_time_objs[pair[0]].extend(model_objects[h][pair[1]])
Expand All @@ -209,42 +202,4 @@ def track_forecast_objects(input_model_objects, model_grid, object_matcher):
# np.array([dist_weight, 1-dist_weight]), np.array([max_distance] * 2))
object_matcher = ObjectMatcher([closest_distance],np.array([1]),np.array([4*model_grid.dx]))

tracked_model_objects = track_forecast_objects(model_objects, model_grid, object_matcher)
color_list = ["violet", "cyan", "blue", "green", "purple", "darkgreen", "teal", "royalblue"]
color_arr = np.tile(color_list, len(tracked_model_objects) / len(color_list) + 1)
fig, ax = plt.subplots(figsize=(11, 8.5))
add_grid(basemap)
basemap.contourf(model_grid.lon,
model_grid.lat,
np.maximum.reduce(model_grid.data),
levels,
extend="max",
cmap="YlOrRd", latlon=True)
plt.colorbar(shrink=0.8,fraction=0.05)
c = 0
for t,tracked_model_object in enumerate(tracked_model_objects):
duration = tracked_model_object.end_time - tracked_model_object.start_time + 1
if duration < args.timethresh: continue
# Draw polygon boundaries
patches = []
for time in tracked_model_object.times:
lon = tracked_model_object.boundary_polygon(time)[0]
lat = tracked_model_object.boundary_polygon(time)[1]
#basemap.plot(lon, lat, color=color_arr[c], latlon=True, lw=0.5)
x, y = basemap(lon,lat)
if len(x) > 2: # if there are only 6 pixels, boundary_polygon may be zero-length. Make sure it has at least 3 points.
patches.append(Polygon(np.transpose([x,y]), closed=True, fill=True))
ax.add_collection(PatchCollection(patches, color=color_arr[c], alpha=0.4))
# Label objects
traj = tracked_model_object.trajectory()
xs, ys = basemap(*traj)
#plt.plot(xs,ys, marker='o', markersize=4, color=color_arr[t], lw=2)
for lon, lat, x, y, time, u, v in zip(traj[0], traj[1], xs,ys,tracked_model_object.times,tracked_model_object.u,tracked_model_object.v):
print "#",t," lon,lat=",lon,lat,"time=",time,"u,v=",u,v
if args.verbose: plt.text(x,y,str(time)+":"+str(t), fontsize=7)
plt.text(x,y,str(time), fontsize=7)
#plt.barbs(x,y,u/model_grid.dx, v/model_grid.dx, length=6, barbcolor=color_arr[t])
c = c+1
plt.title(title_info.get_text(), fontweight="bold", fontsize=14)
ret = mysavfig(odir+"storm_tracks/storm_tracks"+dtstr+"_"+str(params["delta"])+".png")

22 changes: 0 additions & 22 deletions doc/hagelslag.plot.rst

This file was deleted.

1 change: 0 additions & 1 deletion doc/hagelslag.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@ Subpackages

hagelslag.data
hagelslag.evaluation
hagelslag.plot
hagelslag.processing
hagelslag.util

Expand Down
Loading

0 comments on commit dbc12b7

Please sign in to comment.