-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraw_8.py
139 lines (117 loc) · 4.02 KB
/
draw_8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from pathlib import Path
import json
#from light to deep
blue_colors = ['#F8FAFF', '#9EC9E1', '#6BADD6', '#4291C7', '#084594']
my_colors = {
'orange' : '#FF9900',
'yellow' : '#FFC000',
'blue' : '#0066CC',
'sky' : '#70BFFF'
}
my_colors2 = {
'sky' : '#B3D9FF',
'blue' : '#0066CC',
'yellow' : '#FFC000',
'milk': '#FAEADC',
'skin': '#FFA09E'
}
my_main_colors = {
'blue': '#C8C8FF',
'green': '#A0E6B4',
'grey': '#ACDCD7',
'milk': '#FFD7AF',
'red': '#FCB0A6',
}
data_path = "./results"
with (Path(data_path) / f'fig_8a.json').open(mode='r') as f:
rep3_data = json.load(f)
methods = ["insert", "update", "search", "delete"]
fusee_micro_data = [[], []]
for method in methods:
fusee_micro_data[0].append(rep3_data['Y_data']['fusee'][method])
fusee_micro_data[1].append(rep3_data['Y_data']['aceso'][method])
mpl.rcParams['font.size'] = 6
methods = ["insert", "update", "search", "delete"]
labels = ["FUSEE", "Aceso"]
colors = list(my_main_colors.values())
markers = ["o", "s", "^"]
zorders = [3,2,1]
hatches = ['/', '\\\\', 'xx']
plt.rcParams['hatch.linewidth'] = 0.4
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(1.67, 0.9), dpi=300)
fig.subplots_adjust(hspace=0.5)
fusee_up_bars = []
fusee_lo_bars = []
aceso_up_bars = []
aceso_lo_bars = []
for i in range(2):
up_bars = ax1.bar(
np.arange(len(methods)) + (i-0.5) * 0.4,
fusee_micro_data[i],
width=0.4,
color=blue_colors[i*2],
label=labels[i],
alpha=1,
edgecolor='black', linewidth=0.5,
)
lo_bars = ax2.bar(
np.arange(len(methods)) + (i-0.5) * 0.4,
fusee_micro_data[i],
width=0.4,
color=blue_colors[i*2],
alpha=1,
edgecolor='black', linewidth=0.5,
)
if i == 0:
fusee_lo_bars = lo_bars
fusee_up_bars = up_bars
else:
aceso_lo_bars = lo_bars
aceso_up_bars = up_bars
# Add annotations
for fusees, acesos in zip(zip(fusee_lo_bars, fusee_up_bars), zip(aceso_lo_bars, aceso_up_bars)):
for bar_fus, bar_ace in zip(fusees, acesos):
height_p50 = bar_fus.get_height()
height_p99 = bar_ace.get_height()
ax2.annotate(f'{height_p99 / height_p50:.2f}X', xy=(bar_ace.get_x() + bar_ace.get_width() / 2, height_p99),
xytext=(0, 0), textcoords="offset points", ha='center', va='bottom', fontsize=5, rotation=0)
ax1.annotate(f'{height_p99 / height_p50:.2f}X', xy=(bar_ace.get_x() + bar_ace.get_width() / 2, height_p99),
xytext=(0, 0), textcoords="offset points", ha='center', va='bottom', fontsize=5, rotation=0)
ax1.set_ylim(19, 26)
ax2.set_ylim(0, 7)
ax1.spines['bottom'].set_visible(False)
ax1.spines['top'].set_visible(False)
ax2.spines['top'].set_visible(False)
ax1.tick_params(axis='x', which='both', length=0)
ax2.xaxis.tick_bottom()
d = .01
kwargs = dict(transform=ax1.transAxes, color='k', clip_on=False, linewidth=0.5)
ax1.plot((-d, +d), (-d, +d), **kwargs)
kwargs.update(transform=ax2.transAxes)
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs)
ax1.tick_params(axis='y', which='both', length=2, width=0.5, pad=1)
ax2.tick_params(axis='both', which='both', length=2, width=0.5, pad=1)
ax1.spines['bottom'].set_linewidth(0.5)
ax1.spines['left'].set_linewidth(0.5)
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax2.spines['bottom'].set_linewidth(0.5)
ax2.spines['left'].set_linewidth(0.5)
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax1.set_yticks([20, 25])
ax2.set_yticks([0, 5])
ax2.set_xticks(np.arange(len(methods)))
method_labels = ["Insert", "Update", "Search", "Delete"]
ax2.set_xticklabels(method_labels)
ax2.set_ylabel("Throughput (Mops/s)")
ax2.yaxis.set_label_coords(-0.1, 0.96)
legend = ax1.legend(loc="upper left")
legend.get_frame().set_facecolor('none')
legend.get_frame().set_linewidth(0)
plt.tight_layout(pad=0.2, h_pad=0)
plt.savefig("./figures/fig_8.pdf", format='pdf')
plt.close()